

Wireless World, October, 1979 WW 882

with

trace
$\mathrm{ver}_{\mathrm{r}}$
ithoutstorage
or with

Front cover shows a stage in the manufac cathode-ray tube at Thorn Brimar Ltd., now the largest maker of such tubes in the
UK. UK.

wireless world

ELECTRONICS/TELEVISION / RADIO /AUDIO
OCTOBER 1979 Vol 85 No 1526

41 Power but little glory

42 Two-metre s.s.b. and f.m. transceive
by G. R. B. Thornley
48 Sound field microphone
by K. Farrar
5.1 Radio for 2000 A.D

Mobile radio techniques the month

56 Components list for two-metre transceiver

Looking into current mirrors
by F. J. Lidgey

61 Speaker directivity and sound quality
by James Moir
64 Sidebands as phasors -
by J. M. Osborne
71 Letters to the editor
Personal radio services Nature of the electron
74 Novatexts: Schmitt-type astable circuits
by P. Williams

77Microcomputer interfaces - $\mathbf{2}$ by lan H. Witten
81 Low distortion amplification
by B. J. Codd

YOU- COMFLETE RANEE OF FMFOTRONIC MARENAFIE...

12 VOLT BIMDRILLS
2 small. powewfilu drills easily hand held
Integra on/off swith and 1 metre cable.

BIMPUMPS

\qquad 0
=30s
ANDUSTRIAL MOULDNWES IINITED

BIMBOARDS

Stex
cin

S. ne ater mouncesos.

BIMBOARD 4 £41.53
ESIGNER PROTOTYPING SYSTEM
DESIGNER PROTOTYPING SVSTEM
1.2. 3 BIMBOARDS Tounted on BIE 6007
BIMCONSOLE with Integral Power Supply

...FHOM
$=2$
$=2$

Your attention please!

MIL series amplifiers are designed and priced for installations in a wide range of applications including churches, schools,
restaurants, factories, shops and offices.

Each amplifier is available with input facilities for microphones and music sources
six programme push button AM tuners or FM

Please tick as required
For further information on this product $\quad \square$
uners available options.
One model incorporates automatic switching to a battery supply in the event of a power failure.
Such a versatile system can confidently satisfy your exact requirements.

Complete range of sound equipment \square

Name
Position
Attach this coupon to your letter heading and send to
MILLEANK MILLBANK ELECTRONICS GROUP LIMITED, MARKETING SERVICES UNIT

An impressive new development at Crellon.

Litronix is our most recent newcomer. This is very much in line with the Crellon policy of acting as distributor for only the finest principals. The Litronix range is as impressive as its famous name and covers the following products:
Led, yellow, orange, green and infra-red Photo-transistors. ed, yellow, orange,
Opto isolators -
Opto isolators -
in a range that includes jedec types, high speed, duals and quads.
Displays -
including 7 segment and 16 segment alphanumeric.
including 7 segment and 16 segment alphanumeric.
Intelligent displays, too, alphanumeric with memory Intelligent displays, too, alphanumeric with memory,
decoder, driver and control circuitry, new smaller size package ond much faster access time.
Add to all this the prompt, helpful and reliable Crellon service and you'll soon see why, when it comes to distribution, ve've got plenty of muscle.
There's a very informa There's a very informative data pack ovail
telephone or complete the reader reply card.

> clitronix

Peace and quiet
 The quietest sound the ear can hear moves

 the eardrum about $10^{-9} \mathrm{~cm}$, one tenth the diameter of a hydrogen molecule. Movement due to random thermal bornbardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*But the distortion contribution from a QUAD 405 amplifier in normal use (say 85dBa) moves the eardrum less than this amount:

Perhaps sitting in a very quiet room at $-100^{\circ} \mathrm{C}$ and without the music we might nearly hear them but "'tis bitter cold."
For further details on the full range of QUAD products write to

The Acoustical Manufacturing Co. Ltd. Huntingdon, PE18 7DB. Tel: (0480) 52561.
*Sensitivity is never made more acute by the presence of other sounds.

QUAD

for the closest approach to the original sound
QUAD is a Registered Trade Mark

Our early involvement canmake all the difference in getting a goodidea off the ground.

In this age of advanced technology, design engineers occasionally need the help of a specialist in solving specific problemsabove all in the field of electrical connection.

AMP Sales Engineers are qualified to give just such advice. And the earlier they are involved the more help they can give

The specific knowledge of our engineers is supplemented by the research and development resources and application experience of a multi-national company-the leader in its field.

From specialist aeronautical developments like Concorde to long-run domestic appliance products the experience of AMP is broadly based.And becausewere involved insuch projects the sophisticatedtechniques developed to serve extreme environments are readily available to increase reliability and efficiency in other fields.

With manufacturing centres distributed throughout the world, a constant cross-fertilisation of ideas occurs between all AMP companies. Multi-national service of this proportion not only provides prompt world-wide availability, but also safeguards the continuous supply of components by dual-sourcing of manufacture.

So call in AMP on your next design job. Telephone 01-954 2356 . Youll certainly find our early involvement a great help.

AMP
 Ourconnectionsfitin with your ideas.

Hall Electric Limited International Semiconductor Distributor

FORTHE PRICEOF

 TWO INPUTS THREEINPUTS.

Consider the cost-

 effectiveTC314.It's cost-effective because
Gould Advance engineered
the TC314 exceptionally
well.
To the point that our
instrument costs no more
than others having two
channels - when we deliver three.
As you can see from the front panel, it covers from DC to 50 MHz , has a unit
annunciator with indication
of overspill and gate open
and has store or follow mode
with variable sample rate.
Glance, too, at the
functions: frequency, period, to alise, ratio and time.
And, as you'd expect from Gould Advance, we use the
seven-segment Sperry/ Beckman displays; so readable over a wide angle Our data also reveals all.
 one.

\qquad
\qquad

Before you read another meter, read about our latest ideas on DMMs

Have you got the facts on our new Model 463 giving you 200 hours operation from a transistor battery? Compact and versatile, this new meter is the latest addition to our range of competitively priced DMMs built to high performance standards. For your up-to-date information pack on our DMMs range write, 'phone or telex now.

Bach-Simpson
 Bach-Simpson (UK) Limited,
 Trenant Estate, Wadebridge, Cornwall PL27 6HD

wi mat ror furtur detais

Wattsin Digits!

NEW from Anders. Panel- - Unique design-no mounted wattmeters tha
give you a clear, precise ital display. No more separate
required. - Single- and thre phase versions. - Rugged, reliable and Measures true power', eve mith distorted wave forms.
witer -From 885.50 -discounts for quantity-competitive
with analogue equivalents.
IDIERSMEDISMETEFS
WW - 095 FOR FURTHER DETAIIS

If we told you the best way

 to talk to your staff... what would you say? We can tell you how to talk to your secretary, youraccounts clerk, your foreman -or to all of them at once. We can now offer you the first really practical and economical duplex intercom system - for all your communication needs.

- The first 100% British designed and manufactured duplex intercom system
- Employs the smallest known control unit
- Offers paging facility as standard
- Uses less cable than competitive systems. Easier to install-More standard facilities-And less expensive than most other systems

Sarkway Electronics Ltd, Barkway, Royston, Herts SG8 8EE Telephone Barkway (0763 84) 66
Telex 817651. Barcom G ww - 055 FOR FURTHER DETALL

the Euro-source The alternative source tatas sear to hand.

 KO1 ${ }^{5} \mathrm{KGM}$. A video production line with high volume capability, $\begin{gathered}\text { Kere in Europe. Ready to meet your orders for open frame }\end{gathered}$ monitor chassis that neatly replace those long-range importsyou're using currently. Same mounting, same internationalWe're so much nearer, with the stocks, fast production response, spares and service you could only expect from a home based source. KGM prices are highly competitive too, especially on big orders. We can prove that with a quote, but how about product

The specifications you want... bright, clear CRT data display, with superior resolution The quality you get from years of video experience. Your popular screen sizes, in any phosphor collour atest miniaturised pcb construction of course, in an open chassis that allows screen tilt and mounting variations to fit your package.
So if you buy video display this way . . . call KGM now. See how keen we are to win your next order
KGM ELECTRONICS LIMITED
Clock Tower Road, Isleworth, Middlesex TW
Telephone: $01-568$ 0151. Telex: 934120

[^0]
THINKOFA SHAPE

S 500D

Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channe 900 w r.m.s. in bridge mode DC-20 KHZ at full power
0.005% harmonic distortion (typical) at 300 w r.m.s. into 4 ohms at 1 KHZ
3KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms Retro-convertible to dual channel DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

How to be 16 places at once.

When's the last time you had a nice chat with an integrated circuit? All you need is something to translate what's happening in its simple little logical mind. Something like our popular Logic Monitors

Clip one onto an IC-any DIP up to 16 pins-and the 16 LEDs on top of our Logic Monitor follow the state of each
pin. You have, in effect, 16 tiny logic probes in one pocket-size circuit-powered instrument

And, as everyone knows, 16 LEDs are better than one. Because with just a glance, you can see inputs affecting outputs, a whole IC at a time. When you think about it, it's the logical way to look at IC's!

More second
user birinins
from darion

${ }_{90}^{75}$

TEXSCAN
VS40 1.300 MH
WANE

Spectrum Analysers
HEWLETT PACKARD Spectrum Analyser
HELETPACKARD
141T Display nit storage

 T.V. Tesst Equipment
MARCONI

 HUMIGUN
Wunheer.
RAYTEK
RA00 Inta
Vibre
VaWE
DAW
DAWE
i461 CM(M) Porable Vibraion
Analyser Kiit Analser kit
Vorababe Vibration
AIRMEC
 *8 Mk Vac/DC/OHM BOONTON
93 A 20 Hz -20 MHZ MHzTue RMS

But what does it

 way radio or a remote parent company looking for maximum advantage in whichever markets suit it
best at the time? (If the latter, ensure he'll be around best at the time? (If the latter, ensure he'll be around
next time you have a replacement or extension next time you have a replacement or extension We
We are not suggesting that you look to Pye
Telecom for perfection. In this business staying the course for 35 years and making all thess running for the future will always have its problems. But if ever those problems happen to be yours, you can count
on our full commitment now and our resources whenever you need them.

Pye Telecommunications Ltd.,
St. Andrews Road, Cambridge, CB4 1DW. St. Andrews Road, Can
Telephone: 022361222
wiw-037 FOR FURTHER DETAILS

Whoever sees it, you won't blush.

With JVC's help, no non-broadcast video producer need feel embarrassed when a producer from the broadcast side of the fence looks at one of his tapes. That's because JVC have developed, at an a fordable cost, a portable camera which brings truly professional quality to CCTV. Nothing at anywhere near the price handles colour so faithfully, with so small a registration error, with such excellent signal-to-noise ratio excellent signal-to
even in poor light.
But you don't have to believe But you dont have to believe an advertisement. Ask one of the (addresses opposite) to make an (addresses opposite) to make an where you work. This will prove that here you work. This will prove that travels well and is easy to carry around Then try it on your shoulder and a tripod. This way you'll discover that it's going to serve you just as well in the studio as in the field.
Finally, when you've admired the pictures on the colour monitor, admire the features - features to optimise performance under all conditions. Fully automatic features that help make the CY-8800E so remarkably easy to use (which means you can apply half your mind to controls). With the camera and monitor, the Video Centre demonstrator will be
bringing (probably wearing) the JVC CR-4400LE. This is the portable, but equally professional, recorder/player for $3 / /^{\prime \prime} U$-format cassettes. It's the perfect complement to the CY-8800E (indeed, it was designed to be just that The CR-4400LE will give you colour playback, direct into a monitor, on site.

thas an automatic assemble editing function and drop-out compensation Best of all, its designers have made no concessions to quality to achieve portability. It records and plays as well as non-portable U-format equipment (with which, of course, its tapes are fully compatible).
Are all these claims valid? It will cost nothing except a phone call to a Video Centre to discover for yourself that the CY-8800E and CR-4400LE are as good as we think them to be
If you'd prefer to read the leaflets first, use the inquiry service or send your name or headed notepaper to Dept CY/8, Bell \& Howell A-V Ltd Freepost, Wembley, HAO IBR distribump needed. We'rethe exclusive istributor of JVC video equipment to industrial, institutional and
 Exe. And, of course, we offer the exclusive Bell \& Howell Supershield warranty which guarantees free epairs and replacements (except for res and camera tubes) for two year ransportation to and from vide rantut 1 and free
First-class
First-class equipment from JVC First-class support from Bell \& Howell Video Centres. And Supershield, a first-class guarantee.

BelleHowell

Bell \& Howell Video Centres

Avon Video South Ltd, 5 Kingsmead Sq, Bath 22561985
Avon E.F.V.A. Ltd, Raysfield, Finch Road, Yate 0454319306
Berkshire Maidenhead A-V Ltd, 38-40 Station Dorset Soundcraft AV Ltd, 17 Whittle Road, Ferndown Ind Estate, Wimborne, Dorset. 0202875466
Eire Eurotek (Ireland) Ltd, 1 Walworth Rd, Dublin 8 .
0001782343
Hertfordshire Hammond A.V. \& Video Services,
60 Queens Road, Watford WD1 2QN. 0923 39733 London Edric Audio Visual Ltd, 34-36 Oak End Way, Gerrards Cross, Bucks. 0281384646 London R.E.W. Video, Video House, 146 Charing
Cross Rd W.C. $2.01-2403064$ Cross Rd W.C.2. 01-240 3064
London Visual Marcom Systems Ltd, Thames
London Studio 99 Video Ltd, 73 Fairfax Rd, NW6.
London Studio 99 video Ltd, 73 Fairfax Rd, NW
$01-3283282$
London Teletape Video, 12 Golden Square, W1.
London Teletape Video, 12 Golden Square, W1.
ondon Zoom T.V. Ltd, Cowley Mill Trading Estate,
ongbridge Way, Uxbridge UB8 2YG. 08955
Ondon Trec Consultants, 186 Park View Rd
eling. $01-3037406$
Street, Edgware, Middx. 01-951 0466, 91-91a High Manchester Cinephoto Ltd, 17 The Crescent, Salford M5 4PF. 0617366221 Hereford \& Worcs Istead A-V Ltd, 38 The Tything,
WR1 1JS. 090529713 S. 090529713

Merseyside Hargreaves A-V Ltd, 204-206 Warbreck Moor, Aintree, Liverpool L9 OHZ

Northern Ireland Video Services Ireland, Unit BR2613, Cowswater Ind Estate, East Bread St,
Belfast BT5 5 AT. 023255194 Belfast BT5 5AT. 023255194
Nottingham Midland Video Systems Ltd,
3A Attenborough Lane, Chilwell NG9 5 JN 3A Attenboroug
Scotland C. W. Cameron Ltd, Burnfield Road,
Giffnock, Glasgow G46 7TH. 0416330077 Surrey H. Hocken Ltd, 33 Station Road, Redhill. urrey H. 62776
Surrey Ham \& Gibson Ltd. 43 Malden Way,
New Malden, Surrey KT3 6EA. 01-942 9635 Somerset Telec Video, 6 Oxford Road, Pen Mill Somerset Telec Video, 6 Oxford Road, Pen
Trading Est, Yeovil BA21 5HT. 093526451 Tyne \& Wear Tyne Video Ltd, South Shore, East
Gateshead Ind Estate NE 3 AE. 063277.5627 Tyne \& Wear Turners A.V Ltd, 10 Malmo Close, N.S. Tading Est, Ty \& Wea NEOS L. Os9 Westal Wales EOS Electronics Ltd, EOS House, Weston
quare, Barry CF6 7 YF 0446741212 Wales Drake Video Services, 212 Whitc
Road, Cardif CF4 3XF. 022224502 Nest Midlands Studio 45 A-V Ltd, 45 Templar venue, Tile Hill, Coventry CV4 9BQ. 0203461341 Yorkshire Saville A-V Ltd, Salisbury Road, York

回 BelleHowell

ELENCO PRECISION DMM
 ONLY £66.70 inc

The most versatile DMM we have ever offered at

Mavevisuaw ixu

ELENCO VARIABLE VOLTAGE POWER SUPPLIES
maxamanamanazan

We are the sole UK distributors for OPTO
Electronics Inc. and ELENXCO PRECISITN

\qquad
 Distorion Measuring Unit
$15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$ Sine-
Splus Vat
 ww - 054 For further detalls

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER. LOW-COSTLCD MULTIMETER COMPONENTS AND PARTS

AC/DC 8 MHz OSCILLOSCOPE

You save because we design, specifically for or by Tandy at 16 factorie
 Tandy have over 7,000 stores 3 nd dealerships
wortdwide. Over 2,500 product are made wordwwide. Over 2,500 products are made of continuous technological advancement.

The largest electronics retailer in the world.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

M-tron Quariz Crystals. Computer design program gets it right. Every lime.

M-tron is a major, long established manufacturer of AT cut crystals suitable for fundamental and overtone
operations in the 1 MHz to 170 MHz frequency range. volume production capabilily for the microprocessor, CATV, communications, automotive and TV games markets. M-tron's big advantage is the sophisticated computer design program thar determines the optimum
mechanical parameters of a crystal to meet your electrical specifications.
MCP Electronics are the sole UK agent
for M-tron products, many commonly used frequencies are
available from stock at very competitive prices For more details and the new catalogue, contact Ron Adams,

MCP Electronics Ltd., Station Wharf, Alperton, Wembley, Middx ww-071 FOR FURTHER DETAILS

TLETEWPIISHOWROOM

Pil are pleased to announce the official opening of their new 1500 sq . ft. showroom to the public. Offering a range of some 350 electrical measuring instruments manufactured by around 60 manufacturers, both British and international. Pil can cater for practically every electrical measurement problem for any user on an ex-stock/short delivery basis. The showroom facilities and its tectrical back-up are everyone from export Factory/Repairs $01-6390155$
North London Showroon North London Showroom 01-965 2352

AN IEC GROUP COMPANY
houses and overseas users, buyers engineers, to do-it-yourself enthusiasts and hobbyists.

Instruments Electrical the service and calibration division can provide full guarantee acilities as well as offering the ormal repair and calibration service - For an immediate solution to your instrument problems, contac the Instrument Group a Instrument House.
Showroom/Sales/Export 01-639 4461
Open Mon. to Fri. (ring for Sat. opening tin

INSTRUMENT HOUSE,727 OLD KENT ROAD, LONDON SE15 TELEPHONE:OH-6394461 TELFX:8881854(INSTEL)

With the new Oryx miniature low voltage soldering station

you get precision, operator safety, a choice of soldering iron tips and superb value at £9.95 (+VAT)
The new PSU 6 volt soldering station, operating at $360^{\circ} \mathrm{C}$ has its own compact power unit, a double insulated transformer and comes complete with an Oryx 6 watt miniature soldering iron, sponge, sponge well, spring holder mounted at an easy load angle, indicator lights and an internal safety fuse. Obtainable also Electroplan Limited, Orchard Road, ITT Electronic Services, Edinburgh Way, Toolrange Limited, Upton Road Royston, Hetts. 89885 HHH. Halow, Esser. CM20 $\mathbf{2 0 E}$.

Greenwood Electronics
Portman Road, Reading, Berks. RG3 1NE Tel: (0734) 595844 Telex: 848659 ww - 011 For further details

Crisp 0.5" LCD read-out gives up to 2,000 hrs. battery life with 'Battery Low' warning. Basic Accuracy 0.1\%. Ten voltage (min. reading 0.1 mV) ten current (min. reading $0.1 \mu \mathrm{~A}$) and five resistance (min. reading 0.1 Ω) ranges. Unique 'digital hold' facility for easy
data-logging. Auto-polarity and Auto-zero. Inputs protected against overload. Full data-logging. Auto-polarity and Auto-zero. Inputs protected against overload. Full
2 year warranty. A rugged ABS case with adjustable handle makes the LMM-100 the ideal instrument for bench or field use.
LMM-100 MULTIMETER 669.95 . SUITABLE LEADS E1.95. P \& P $\begin{aligned} & \text { 1.50. ADD } \\ & \text { 15\% VAT TO ALL PRICES. }\end{aligned}$

LASCAR ELECTRONICS BASLLDON (0268)727383

 Unit 1, Thomasin Road, Burnt Mills, Basiddon, Essex SS13 1LH
WATTS \& RMS

Some instruments claim true RMS but are AC coupled, so that a composite input cannot be measured without calculation -
not so the WM80!

For true RMS or Power with ‘difficult' wave forms the WM80 AC/DC Test Set is a new instrument giving direct readings. Measure ments of true RMS, true Average and Peak

Voltages in the range 30 mV to 500 V Current in the range 1 mA to 15 A
Other direct readings are obtained for:-
Power in the range 3 mW to 7.5 KW Frequency in the range 10 Hz to 10 KHz . Indirect determinations can be made of Power factors
Form factors
Crest factors
The WM80, at a price of less than $£ 200$, is the latest product from WPA Ltd., a company well known in the Science Education field where they have been serving the needs of schools and universities for over a decade.

WPA
WALDEN PRECIIION APPARATUS LTD. SHIRE HILL. SAFFRON WALDEN.
ESSEX CBII 13 BD TTEI 0799230 ESSEX CB11 380 (Tel: 0799 23018)

Brmm...Splash..Zoom with ZNAIOCE precision

Our servo IC gives you a complete servo control system on achip

It's specially designed for the pulse-width position servo mechanisms you use in all types of model control. ZN419CE gives you a low external component count and output drive capability

Send for the data sheet today, and a full list of stockists. Ferranti Electronics Limited, Fields Nèw Road, Chadderton, Oldham OL9 8NP Telephone:061-624 0515

> FERRANTI Semiconductors ww- 013 FOR FURTHER DETAILS ELO2/4/069 [1]

The King of Valves

Genuine Gold Lion valves-hand built, utilising advanced pumping techniques and individually tested to a tight specification-are your
answer to the high quality sound demands made by musicians and listeners alike.

Gold Lion KT77's and KT88's covering $30-200$ watts, are now avaita and distribution details. Find out all about the King of Quality from M-OV.
© ${ }^{[1}$ Trade Mark of M-OVAudio Valves.
MOV
sec
THE M-O VALVE CO. LTD. HAMMERSMITH. LONDON. ENGLAND. W6 TPE.
TELEPHONE O1-603 343i. TELEX 23435. GRAMS THERMONIC LONDO.

Make your own PCB's
The Professiona/ Way WITH THE MAPLIN ULTRA-VIOLET PHOTO ETCH SYSTEM

The system is simple to use. You don't need a darkroom or any artwork is not destroyed in the process which means. You can modify the artwork if a
pcb is not quite right, without pcb is not quite right, without
having to remake the whole artwork.
You can make lots of identical ${ }^{-1} \Omega$ (ii) pcb's from one artwork. And you make the artwork more way the professionals do it (All prices include VAT and P\&P. If total under $£ 2$ add 20 p.)
O. Box 3, Rayleigh, Essex. Tel. (0702) 554155. Access \& Barclaycard welcom

ELECTRONIC SUPPLIES LTD Shop address in our full page advert on page 7

FOR POWER SEMICONDUCTORS

INR

INTERNATIONAL RECTIFIER

Diodes Thyristors
Fuses for protecting Semiconductors Power Transistors Potted Bridges Solid State Relays
Silicon Stacks Surge Suppressors

IN A HURRY!

 070-6814931HARMSWORTH, TOWNLEY \& CO. LTD.
HAREHILL TODMORDEN LANCS OL 14 SJY Phone: 0706814931
Telex 635091 Albion G Telex 635091 Albion G
Attn: HARMSWORTH

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Other Ranges and

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$ WW - 043 FOR FURTHER DETAILS

LOWE ELECTRONICS LTD.

119 CAVENDISH ROAD, MATLOCK, DERBYSHIRE
TEL. 06292430 OR 2817. TELEX 377482 LOWLEC

CS1575 DUAL TRACE 4 FUNCTION

 action or send for complat
$\mathbf{E 2 7 8}+$ VAT

MCP Electronics Limited Station Wharf Alperton Wembley Middx Telephone: 01-902 5941

ANALLSERS Wave Analyser $5-300 \mathrm{MHz}$,
ARMEC 248 A .
ARMEC 853 Wave Analyser $30 \mathrm{KHz}-30 \mathrm{MHz}$ ARMEC 853 Wave Analyser $30 \mathrm{KHz}-30 \mathrm{MHz}$
DYMAR 771 A. W. Wave Analyser $20 \mathrm{~Hz}-50 \mathrm{KHz}$
 ATTENUATORS ADVANCE A.64. 0 -70dB 1dB steps 600 ohms
MARCONI 1073A $0-100 \mathrm{~dB}$ ddB steps 75 ohms PHILCO Attenuator 30 dB fixed 50 ohms 100 watt
GENERAL RADIO 1607 Transfer Function and Immittance
 CINTEL 277 Decade Resistance Box $10,1,1 / 10,1 / 100$
SULLINAN 4 De WAYNE KERR R.161 Bridge Detector $5-100 \mathrm{MHz}$
WAYNE KERR B. 21 .21A Uiversal Bride 01.
WAYNE KERR B. 601 R.F. Bridge $1 \% 15 \mathrm{KHz}$ - 5 MHz COUNTERS
MARCONI TF. 1417 + TM. 71647 Digit 500 MHz MARCONI TF. $1417+$ TM. 71647 Digit 500 MHz
HEWLETT-PACKARD 5260 A
0.3 -12.4GHz Frequ RACAL 8356 Digit DC-15MHz RACAL 8356 Digit DC- 15 MHz
TAKEDA RIKEN 8 Digit $10 \mathrm{~Hz}-500 \mathrm{MHz}$ Counter

 ARMEC 210 M Modulation Meter $2.25 \mathrm{MHz}-300 \mathrm{MHz} \ldots \ldots-\ldots 950$
AIRMEC 301 A R.F. Millivoltmeter $100 \mathrm{uV}-300 \mathrm{~V}$. $100 \mathrm{~Hz}-900 \mathrm{MHz}$
 RACAL

 MARCONI TF. 1020 A/1 R.F. Power Meter $0-100$ watt 50 ohms MARCONI TF. 1152 R.F. Power Meter 0 - 25 watts 75 ohms tion 20Hz-200KHz

A.P.T. TCU.250 0 -50V 2 A A $1 . .$.

 SIGNAL SOURCES $2 A$
 AIRMEC 365A VHF. AM/FM $1-320 \mathrm{MHz}$ O/P $2 \mathrm{uV}-220 \mathrm{mV}$ V750.00 HEWLETT-PACKARD 608D Signal Generator $10-420 \mathrm{MHz} 50$
 MARCONTFD.14H/4 Singal Generanor 10KHz-72MHz E470.00
MARCON TT.995A/5 Signal Generator AM/FM 1.5 MHz . MARCONI TF. $995 \mathrm{~A} / 5$ Signal Generator AM/FM 1.5 MHHz -
220 MHz
 MARCONI TF. iog9 Sweep Generator 0-24MHz MARCONI TF.1370A R.C. Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz}$, , 10 Hz .
100 KHz Square Wave. 100 KHz Square Wave
MUIRHEAD D-650-B 1111,100 ع150.00
ع130.00
 RHODE \& SCHWARZ SWH Sweep Generator 50 KHz SIEMENS Level Oscillator/Meter 10 KHz -17MHz
FARNELL LM. 2 Oscillator Square/Sine 10 Hz -1MHz RECORDERS ${ }^{\text {KENT MK. } 112} 12$ pt Resistance Thermometer $0-120$ KENTMK. (Clevite) 260 b pen Chart Recorder \quad.... HEWLETT-PACKARD (Mosley 2D X-Y-T Recorder HONEYWELL 17066 Channel U/V Chart Recorder 4 nisceiliancous
AVO TT. 164 Circuit Transistor Tester
Cawkell FU.4. Variable Band Pass Filter

MOD Insulation Tester AC/DC 1-5KV …....... | E850.00 |
| :---: |
| $\mathbf{8 5 0 . 0 0}$ |
| 80.00 |
| GHT LAB 361D Analogue Th |

channel 10 Probes RHODE \& SCHWARZ SWOB Polyskop 0.5-

MARCONI TF. $1245 / 1247$ Magnification Meter and Oscillator $20-300 \mathrm{MHz}$. 2. $\underset{500 \mathrm{KHz}}{\mathrm{MARCONI}} .2600$ S............................... MARCONI TF.2604 Electronic Voltmeter MUIRHEAD D-729-BM Phase Meter 0.25Hz-10KHz
RADIOMETER BKF.6. Distortion Meter 20Hz-20KH

SCOPEX 4D-25 Dual Beam $25 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}$, NEW \quad| E275.00 |
| :---: |
| $£ 360.00$ |

 GRIFFIN Oven Amb-100
AVO CZ. $457 / 6$ Component Comparator iK AVO CZ.457/6 Component Comparator
ADL. 270 (6RR Analogue Limit Detector
MICROWAVE MICROWAVE
MARCONI 6458 Signal Source MARCNI 6458 Signal Source
4-12GHzz Solid State
MA50.00
MARCONI $6004 / 4$ Mixer 7 .

 former
HEWLETT- PACKARD............0
H34A, HEWLETT-PACKARD J347A,
J910A, J281A Noise Source,
Terminato
8.2 GHz

iкHz

Quantum Electronics THE LATEST AND BEST SOURCE OF SUPERFI AUDIO EQUIPMENT

'STATE OF THE ART' PRE-AMP

 'DOMESTIC' POWER AMP KITS

'SLAVE TRAY' \& RACK MOUNTING KITS

MODÚLES: UP TO 250W r.m.s.

 1A STAMFORD STREET, LEICESTER LE1 GNL USA: OX DISCO, BOX 123, CLAYMONT, DE 19703

ww-076 FOR FURTHER DETAILS

Wmatsswon. ocroses 19 1978 easy to fit Display Bezels
 Supplied complete with lens and all fixing plus compatible display mounting boards.

ww - 051 FOR FURTHER DETAILS

TheNEWP3

from PRECISIONPETITE
for the man in a hurry...

PRECISION PETITELTD

 nga high street tedoington middlesex twi bhg

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc... etc,
Just plug-in the Probe, and read the temperature on the large oper . Just plugg-in the Probe, and read the temperature on the large oper
scale mere.. Suppied with carring case, Probe and internal $11 / 2$.
volt standard size battery
 Write tor turthier details [VAT 15% EXTRA)
HARRIS ELECTRONICS (LONDON) 138 GRAY'S INN ROAD, LONDON, WC1X 8 AX (Phone 01-837 7937)

WW -029 FOR FURTHER DETALLS
the indispensable

THRULINE WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry
What more need we say

ㄹㅇㄹ electronics limited 2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: $01-868$ 1188-TELEX 8812727

The FM/AM 1000s with Spectrum Analyser
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

The DMIM you've wanted: Quality and performance at a low, low cost

 A surprisingly low £ 49.95. Surprisingbecause you get the type of protormance because you get the type of performance
you've wanted but expected to pay much you ve wa
more for.
Quality, Performance and Accuracy The 2010A offers you long-term accuracy
with a laser-trimmed resisto network with a laser-trimmed resistor network, a
stable bandgap reference element, and stable bandgap reference element, and
single-chip LSI circuitry Wime single-chip LSI circuitry. With 31 ranges and
6 functions, you can measure AC or DC volts from $100 \mu \mathrm{~V}$ to $1000 \mathrm{~V} ; \mathrm{AC}$ and DC current from $0.1 \mu \mathrm{~A}$ all the way to 10 A ; resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Typical DCV
and Ohms accuracy is $0.1 \%+1$ disit Easy and Ohms accuracy is $0.1 \% \pm 1$ digit. Easy-
to-read $31 / 2$ digit LED's with 9 mm numerals and automatic decimal point.
Extra features for greater convénience and flexibility

- Unique X10 multiplier switch gives you convenient selection of the next higher decade. Hi-Low Power Ohms capability gives you three high-ohm ranges that supply
enough voltage to turn on a semiconductor junction. You use the three low-ohm ranges for in-circuit resistance measurements.
\bullet Wide Frequency Response: 40 Hz . - Wide Frequency Response: 40 Hz to
40 kHz bandwidth lets you measure audio through ultrasonic AC signals.
- Touch-and-Hold Capability (with optiona probe) lets you hold readings as long as you

wish so you can make measurements in hard- Whether you're a professional or a hobbyist to-reach places without taking your eyes off (or both!): When quality, accuracy, and price the probe tip. Aeroing; overrange indicationt protection on all ranges.
This compact unit is powered by 4 «C» cells (not included) so that you can take your lab Kit or Factory-Assembled Either is a tremendous value. Complete kit only $£ 49.95$; assemble it yourself with our
easy-to-follow instructions 0 . easy-to-follow instructions. Or, for only
$£ 64.95$. Sabtronics will ship your 2010 A factory-assembled and calibrated. ount, you should check out the 2010 A DMM or yourself.
2010A Assembled: $£ 6495$ (plus p.p. $£ 3.50$ and VAT at 15\%) THP-20 Touch and Hold Probe: $£ 9.95$ Making Performance Affordalle
Salotirich
ITERNATONALINC Send your orders with your payments to:
TIMWOOD LTD. TIM Albert Street. 14 Albert Street, Cowes, Isle of Wight
England. Telex 86892

PARAGRID ANTENNAS

The combination of type TM30 transportable mast
with Paragrid Antena is a classic example of total transportability, ever demanding for rapid erection and deployment for fast communication, whether emporary or permanent
Paragrid Antennas offer great advantage over spun
dishes in as much as these are broken down and dishes in as much as these are broken down and
packed in lightweight cartons. Shipping and site transportation costs are drastically reduced; this
effectively produces a considerable saving. effectively produces a considerable saving. The Paragrid Antennas are manufactured into the
three most popular sizes, 10 ft (3.048 m .), 7 ft . (2.134 m.$)$ and 4 ft . $(1.219 \mathrm{~m}$.) diameters, frequency range 450 thru 1500 MHz with excellent front-back
ratios. VSWR across entire bands are better than ratios. VSWR across entire bands are better used
1.3 to 1 . High tensile aluminium alloy are used extensively throughout the manufacturing, giving advantage of lightweight yet extreme strength.
Fixings are of stainless steel and spun galvanize. The radiating elements are manufactured of brass and silver-plated for greater conductivity. As an added advantage against environmental hazards the eleme
shroud.
RADIO MASTS LTD.
North Portway Close, Round Spinne y
Northampton, NN3
Telex: Headship (N'pton) 31355 (Ramar)

WW - 102 FOR FURTHER DETAIIS

carbon film RESISTORS
PRICES REDUCED. SEND FOR DETAILS NOW

explosion proof
communications

* Ex. loudspeakers $12 w$ and 25 w
*Ex. proof intrinsically safe weatherproof
telephone uni telephone units
complete systems for the
offshore - chemical petroleum - railway motorway environments

$\approx \approx N \approx$

 NEUMANN

Neumann Communication Systems Limited Lea Industrial Estate, 151 Lower Luton Road Harpenden, Herts AL5 5EO
Telephone: (058 27) 67011 Telex 826638

VORTEXION $\curvearrowright=$ a happy event...

Soundstor

from Beyer Dynamic

- True supercardioid characteristic

Well balanced, rising frequency response frequency response with low frequency roll-off with low frequency
and presence boost

Built-in hum bucking coil to cancel electromagnetic hum

- Breath and "pop" filter

On-off switch

- Professional three-pin audio connector

DESCRIPTION AND APPLICATIONS

The Beyer Dynamic model M $400 \mathrm{~N}(\mathrm{C})$ soundstar mk II is a unidirectional moving coil microphone, especially designed to meet the demand of musicians, singers and entertainers for an elegant and superb sounding microphone. It is also an excellent microphone for instrument pick up and well suited for a variety of broad cast, recording and stage applications. Its supercardioid pickup pattern minimizes background noise and other undesirable acoustic effects. A highly effective built-in bur'st filter controls explosive breath and "pop noises. For boom, stand and hand use, indoor and out, the M 400 is unaffected by humidity and temperature extremes. Its rugged construction makes this microphone particularly suited to withstand the rigors of professional use. The microphone is fully fieldserviceable.

M 400 N [C]

soundstar mk II

Bever)) Dynamic

MEMORIES

AM2708	1KX8	EPROM
TMS2516	2KX8	EPROM
TMS2716	2KX8	EPROM
2102L	1KX1	SRAM
2114-2	1KX4	SRAM
4060	4KX1	DRAM
4096-16	4KX1	DRAM
4116-3	16KX1	DRAM
Z-80 CPU	4 MHz	
Z-80 PIO	4 MHz	5

STRUTT
3c BARLEY MARKET TAVISTOCK
DEVON PLI Tel: TAVISTOCK (0822) 5439
Telex: 45263 IeGtrical and mechanical engineering lto. ELECTRONIG COMPONENT DISTRIBUTORS

Plastic Boxes

747 UNIVERSAL COUNTER TIMER £175 + £3.50 p\&p

DC-150MHz Measures - A KHz, C MHz, Period A, 8 DIGITS 8 FUNCTIONS 3 CHANNELS

Measures - A KHz, C MHz, Period A,
Pulse Width $A \pm$, Time $A \pm$ to $B \pm$, Count A, Count A (gated by B, reset by C)
Max. resolution 0 . Averages 1 to 1000 events.

Also available - Counter Timers, Frequency Meters, Filter Also available - Counter Timers, Frequency Meters, Filter
Oscillators, Function Generators, Off-air Standards, Lab/
 OMB ELECTRONICS Riverside, Eynsford, Kent DA4 OAE
Tel: Farningham (0322) 863567
 WW - 087 FOR FURTHER DETAILS

TRADE WITH THE ARAB WORLD AND AFRICA

Announcinga unique exhibition-and a unique opportunity for yourcompany

In June next year in Paris, one of the most important exhibitions of the 1980 s will be staged It will help identify outletsfor industrial product - including agricultural machinery and agrochemicals, consumer goods, works and services It will provide a showcase for the developing nations. Anditwher heads of industrial organizations, senior government officials, directors of development projects and other top decision-makers.

Expansion-Cooperation 1980-1990 will provide a unique opportunity for to expand sales, meet potential customers and end-users, plan joint for projects in the West and in for projects in the West and in
Africa. The exhibition is organized
with the co-operation of the Arab Bank and is under the patronage of the French Government, the O.P.E.C. Special Fund and 26 Arab
Ministers.
Perhaps your company is new to the Arab and African markets. Perhaps it has long experience of doing business in one or more of the countries there. Either way, you will scarcely find a better or more economical opportunity of participating in their economic expansion than participating in their eco
For further information and exhibition For further information and exhibition
details, please contact Bryan Cassidy or etails, please contact Bryan Cassidy
Wendy Jesty, IPC Business Press Wendy Jesty, IPC Business Press Limited, Surrey House, 1 Throwley
Way, Sutton, Surrey SM1 4QQ. Tel: 01-6438040 Telex: 946564 Bisprs-G.
/15 JUNE 1980
INTERNATIONAL EXHIBITION AND FORUMS
EXPANSION COOPÉRATION

COMPLETE THIS COUPON FOR
FURTHER DETAILS
To: Bryan Cassidy, IPC Business Press Limited,
To: Bryan Cassidy, IPC Business Press Linited,
Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ. Engrey H.
Please send me further information and exhibitio

Address
Address

Speak to the specialists

B424 LCR Meter

Accuracy $\pm 0.25 \%$. Fast connection of components with immediate direct reading; pass/fail indicator; high efficiency at low cost. Easily used by non-technical staff, especially at goods in, on the production line or at final Quality Control.
B605 LCRD and Q Automatic Component Bridge Accuracy $\pm 0.1 \%$, with microprocessor and memory Automatic trim and ranging; 2,3 or 4-terminal measurements. Select from 3 test frequencies: $100 \mathrm{~Hz}, 10 \mathrm{kHz}$ and 1 kHz . A versatile instrument for Quality Control or R \& D.

B905 LCRGD and Q Automatic Precision Bridge Accuracy $\pm 0.05 \%$ Microprocessor, memory and many sophisticated options including automatic sorting, binning and remote control. Can form the nucleus of a fully automated test system. Write or ring today for details.
Wayne Kerr
WULMOT BREEDEN ELECTRONICSLMMTE
DURBAN ROAD BOGNOR REGIS WEST SUSSEX PO22 9RL ENGLAND TELEPHONE BOGNOR (02433) 25811
TELEX 86120

A remarkable range of meters, bridges and bridge systems to solve every measurement problem.

WW - 022 FOR FURTHER DETAILS

wireless world

Power but little glory

Editor:
TOM IVALL, M.I.E.R.E.
Deputy Editor: PHILIP DARRINGTON hone 01-261 843
Tochnical Editor: GEOFFREY SHORTER, B.S

Projects Editor:
IIKE SAGIN
Nows Editor
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
hone 01-261 8043
Communications Editor:
TED PARRATT, B.A.
Phone $01-2618620$
Drawing Office Manager:
ROGER GOODMAN
Production \& Design:
Production \&
ALAN KERR
Advertisement Controller
G. BENTON ROWELL
Advertisoment Mana
Advortisement Mat
BOB NIBES
Phone 01-261 862
DAVID DISLEY
DAVID DISLEY
Phone 01-261 8037
barry leary
Phone 01-261 8515
Classified Manager:
BRIAN DURRANT
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
NEIL MCDONNELL
Classified Advertisements,
Phone $01-2618508$
JOHN GIBBON Make-
ublishing Director:

Two-metre s.s.b. and f.m. transceiver

Design and construction of an advanced unit for the experienced constructor by G. R. B. Thomley, G2DAF

The transceiver to be described in this article is the final result of two years development and constructional work The aim was to provide a unit which
would be tunable over the full range of would be tunable over the full range of
the two metre (1444 to 146 MHz) band and capable of s.s.b., f.m. and c.w. operation, with an output power of 10 to 20 watts p.e.p. To avoid crystal manipulation and bandpass filter
alignment, which some people find alignment, which some people find
difficult, the author decided to generate the initial s.s.b. and f.m. at 10.7 MHz using low-cost, easily-obtainable block crystal filters. The transceiver has been in use almost daily over the past three
years, and this has given the author ample opportunity to prove the reliability ease of control, and long term stability of the design. It can be built for under £200.

THE MAIN REQUIREMENTS for the transceiver were as follows: The single conversion format was to be used to
improve the receiver cross-modulation and blocking performance and it had to have a straightforward setting-up and alignment procedure. First class carrier,
sideband and intermodulation product suppression, together with natural s.s.b. speech quality, was required and the transceiver was to include narrow-band f.m., compatible with amateur band requirements. Easily-repeatable con-
struction was desired, using (with the exception of the final output amplifier) p.c.bs throughout. All the signal frequency circuits were to use push-pull balanced mixers which would provide
good
discrimination against good discrimination against and a clean output with a low order of distortion products. Wherever possible, standard-production, easily-obtainable components were to be used and high
cost items were to be avoided Constructional features considered to be desirable were also itemised. Unit construction, a clean layout, good accessibility and a professional appea-
rance were considered by the author to be important. The coils were to be home-made using standard, readilyavailable coil formers, dust cores and
screening cans. To simplify operation a press-to-talk control was to be incorporated and the transceiver was to be driven by a separate power supply. In order to obtain the required stability, a variable-frequency oscillator
(v.f.o.) operating on a relatively low frequency is essential. This can be raised to the required heterodyning frequency of 133.3 to 135.3 MHz in two ways. The first method uses the sofeeds a mixer stage together with the output from a high frequency crystal oscillator. In this case the sum of the two frequencies is extracted at the mixef output circuit. The second,
method uses a "phase-lock loop v.f.o." in which a voltage-controlled oscillator (v.c.o.) tuning 133.3 to $135 . \mathrm{MHz}$ is locked back to a relatively stable v.f.o.
on a much lower frequency. This

WIRELESS WORLD, OCTOBER 1979 method has the oscillator at signal frequency - which avoids the problems mixing products - but the stability is as good as that of the low frequency v.f.o. The second method was preferred grated circuit phase detector, Motorola type MC4044P*, which produces reliable and consistent results, and locks from switch-on. It was the author's desire to construct a workable phase-
lock loop v.f.o. which encouraged him to develop the transceiver described here.
Transceiver block diagram
A block diagram of the transceiver is given in Fig. l and shows the signal switching and the s.s.b.-f.m. mode switch $\mathrm{S}_{\mathrm{la}}, \mathrm{S}_{1 \mathrm{~b}}, \mathrm{~S}_{1 \mathrm{c}}$, $\mathrm{S}_{1 \mathrm{~d}}$. On receive, the aerial is connected to the receive converter unit which translates the two put from this converter simultaneously feeds the f.m. generator unit and the s.s.b. generator unit. Audio signals from both generators feed via $S_{1 b}$ to the audio power amplifier
On transmit, the microphone output simultaneously feeds the s.s.b. and f.m. microphone amplifiers and their respective 10.7 MHz i.f. units. Both of the s.s.b. and f.m. outputs connect to the
transmit converter unit where the signal is translated to the required twometre band frequency. The low level output from the converter feeds into the power amplifier unit which gives 10 to 2W of r.f. output power.
v.c.o. amplifier are common to "tran mit" and "receive" and are permanently connected to an unswitched 12 V stabilized power supply. Power for the selected as required by the switch bank $\mathrm{S}_{\mathrm{la}}, \mathrm{S}_{1 \mathrm{~d}}$ and S_{lc}. Two relays, one for power and one for the aerial, control the transmit-receive function, and are operated during communications by a lock loop unit provides the required heterodyning frequency of 133.3 to 135.3 MHz in two ranges each $1,000 \mathrm{kHz}$ wide, and is locked back to the relatively stable v.f.o. tuning over the
range of 8.3 to 9.3 MHz

S.s.b. generator unit

All the components for the 10.7 MHz s.s.b. transmit-receive unit, which has the circuit shown in Fig. 2, are assembTransistors Tr_{1} to Tr_{6} form the transmit section and Tr_{7} to Tr_{17}, the receive section. Tr_{6} is a f.e.t. and offers a high impedance load to the microphone Audio signals feed via the preset volume amplification, Tr_{5}, and then via a screened cable to the twin diode balanced-modulator D_{2} and D_{3}. The

Front view of the transceiver showing the panel layout.

Underchassis of the transceiver showing, left to right, the phase-lock unit, the v.c.o. amplifier p.c.b., the receiver converter p.c.b., and bottom right, the f.m. generator p.c.b.
connects to the capacitive tap C_{14} and C_{15} across L_{4}, and is amplified by two gain is controlled by the preset resisto R_{2}.
Coil L_{2} is resonated by two capacitors C_{2} and C_{3} in series to provide an imped nects the 10.7 MHz output signal into the low impedance 2.4 kHz wide block filter via the d.c. blocking capacitor C_{4} and the filter output then connects, via C_{45} and the switching diode D_{14}, to the low sideband carrier crystals XL_{1} and XL_{2} are switched as required by the mode" switch $\mathrm{S}_{1 \mathrm{a}}$ and diodes D_{7} and D_{8} to the carrier to be pulled exactly on to dequired frequency. In practice necessary and this is provided by C and C_{31}, which are soldered in paralle with each trimmer on the back of th
the secondary of L_{5} feeds the receive dimoduator $\mathrm{D}_{11} \mathrm{a}^{\text {and }} \mathrm{D}_{12}$ and the high Tr_{4} drives the f.e.t. phase splitter Tr_{3} to provide a balanced r.f. input to the transmitter balanced modulator D_{2} and D_{3}. The carrier oscillator is common to both transmit and receive and, accorswitching diodes D_{4} and D_{5} from both the transmit and receive power rails. On receive the 10.7 MHz signal input is switched by diodes D_{15} and D_{10}
through the block filter through the block filter, and then m.o.s.f.e.t. i.f. stages $\operatorname{Tr}_{7}, \mathrm{Tr}_{8}$ and Tr_{9} and the balanced demodulator. D_{11} and D_{12} is fed by the low impedance output from the secondary of L_{9}. The 10.7 MHz i.f.
input is heterodyned by the push-pull input is heterodyned by the push-pull
carrier frequency to the demodulator, and the resultant difference frequency in the audio range 300 to $2,700 \mathrm{~Hz}$ con-

uired slow release. Phase inversion is effected by Tr_{15} whose collector pro-
vides a negative going a.g.c. potential. The emitter of this transistor drives the S -meter which gives a visual indication of relative received signal strength from zero to $\mathrm{S} 9+40 \mathrm{~dB}$.
In order to avoid the necessity of an additional negative power supply, the
a.g.c. control circuit is returned to chassis earth. An aerial input signal from $0 \mu \mathrm{~V}$ to 100 mV will give approximately 2.5 V change in the a.g.c. line potential, the lowest point being earth. Therefore, in order to take full advantage of the gate-2-to-source volts against power gain characteristics for the RCA 40673, the "source line" (i.e. the return path for gate 1 and source
bias resistors) is held 3.3 V positive relative to chassis earth, and is stabil-
ised with a 2.7 V Zener diode D_{18}.
The "hold" time constant for the a.g.c. line is determined by the value of "bleed" resistor R_{68}. Initially the zero signal a.g.c. line potential is set at 5.5 V by the pre-set resistor R_{65} and the S meter zero setting by R_{63}. R_{66} allows the sitivity. In other words it enables the operator to set the meter to S9 for an aerial signal input of $50 \mu \mathrm{~V}$ (the normally accepted standard for amateur band receivers).

F.m. generator unit

Figure 3 shows the circuit of the 10.7 MHz f.m. transmit-receive unit. All components are assembled on a p.c.b.
measuring $61 / 4 \times 4$ in. Transistors Tr^{2} Tr_{19} and IC_{1} comprise the receive sec-

On "receive" the incoming signal is switched by diode D_{19} to the 25 kHz channel spacing block crystal filter. This filter has a 6 dB bandwidth of approximately 15 kHz and has been narrow band f.m. requirements. For correct operation the filter requires an input and output parallel termination of 910 ohms and 25 pF , and this together $\mathrm{R}_{7} \mathrm{C}_{55}$ and $\mathrm{R}_{3} \mathrm{C}_{5}$ oad obtained with $\mathrm{R}_{77}, \mathrm{C}_{95}$ and $\mathrm{R}_{78}, \mathrm{C}_{96}$
i.f. amplifiers with overall gain controlled by the pre-set resistor R_{81}. At the time the f.m. unit was being developed, the Toko type KALS4520A screened
coils became available in the UK and

Fig. 3. F.m. generator unit

WIRELESS WORLD, OCTOBER 1979
these were used for L_{14} and L_{15}. The of the internal coil assembly, as pa IC_{1} is an RCA CA3089E inco a three-stage limiting amplifier, quadature detector, muting and tuning meter output. The original development circuit followed the manufacturer's circuit between pins 9 and 10 of the quadrature detector. This was considered by the author to be unsatisfactory put and the long term stability of the L/C circuit for amateur narrow-band (nominally $\pm 5 \mathrm{kHz}$) f.m. reception. The erformance has been materially mproved by the addition of a crystal discriminator, XL_{3} in the circuit diaaudio with a low level of distortion, the crystal series-resonant point must be
placed exactiy at the filter centre frequency, and this is provided by the trimmer C_{111}. The resistor R_{1} ensures a d.c. path between pins 9 and 10 of the detector. Terminal posts marked TP (test point) and the series resistor R_{9} are incorporated to enable an external the setting of C_{11} and the plotting of the resultant S-curve. This will be dealt with in detail under the heading Alignment". In addition, it was felt circuit associated with pins 5 and 12 did not meet the requirements of amateur band operation so the required performance has been obtained by an outooard squelch unit.

$$
\begin{aligned}
& \text { On "transmit," the crystal } \\
& \text { microphone input is amplified by } \mathrm{Tr}_{2}
\end{aligned}
$$ and Tr_{23}, the amplifier gain being con-

trolled by the preset resistor R_{117}. Th output from the emitter Tr_{22} is fed to the varicap diode in the v.f.o. unit and the
reference voltage for this diode is fed via R_{125} from the panel-operated "calibrate" potentiometer R_{124}. This control would be very sensitive to a fractional change in power supply voltage or to hum ripple. It is therefore most importan
that R_{124} is fed from a supply rail incorporating double stabilization, and this requirement is effected by Tr_{25} and D_{23}. XL_{4} is the carrier crystal adjusted by L_{20}
to exactly 10700000 Hz to exactly $10,700,000 \mathrm{~Hz}$. The output of the carrier oscillator Tr_{21} is amplified
the m.o.s.e.t. Tr_{20} set by the preset control R_{101}. A low impedance output is taken from the secondary of L_{19} via the switching diode D_{20}.
continued on page 53

Soundfield microphone

Design and development of microphone and control unit
by Ken Farrar, Calrec Audio Ltd

Ambisonics and surround sound technology based on psycho-acoustic the soundfield microphone. The complete design combines advanced acoustical, mechanical and electrical precision engineering in a revolutionary way. Recordings made with the microphon and reproduced through a minimum of
loudspeakers produce images which are stable and uncoloured, while additional loudspeakers, which need not be full range, allow reproduction of valuable height and reverberant information. The recording engineer not only to record total sound field and thus protect his recording from obsolescence, but to compare and dub to conventional forms. djusting, panning and steering his "microphones" after the event,

THE DEVELOPMENT OF THE NRDC Ambisonic technology for surround sound recording and reproduction is now well advanced and much has been published by those directly involved Early attempts to supplement the restsentation by hasty additions of extra rear channels in the so-called "quadraphonic" format have proved largely unsuccessful. Their particular inheren weaknesses stable images from inter loudspeaker directions, and the encoding formulae of some systems exacerbates this problem further. It has been clearly shown that using Ambi-
sonic technology, much better use can be made of extra loud speakers and channels, and that if only two channels are available, a decoding system may be employed which gives psycho-acoustic optimisation of the presentation in res coloration or "phasiness."

Background to microphone design

 The theoretical analysis of surround sound psycho-acoustics into the Gerzon ${ }^{1}$ - argues that at low frequen cies below about 700 Hz , where half wavelength corresponds to the distance between the ears, the information reaching the brain is derived from thesum and difference of the inputs to the two ears. This corresponds at low
frequencies respectively to the pressure component of the sound-equivalent to an omni-directional microphone component of the sound - equivalent to a sideways pointing velocity, figure-ofeight microphone Y . As the head may be rotated, a forward pointing velocity, figure-of-eight pick-up is also required to determine direction X, Fig. I. The sideways velocity (figure-of-eight) signals corresponds to the apparent sound direction according to Makita's ears.
ears. frequencies between 700 Hz and 5 kHz sound direction is detected by signal energy and corresponds to an

"energy vector" being the addition of vector components pointing at each
loudspeaker whose lengths correspond to the energy in that speaker. Above 5 kHz the pinnae (flaps) of the ears. appear to offer directional information ot the brain by differences in coloration different directions. diferent directions.
Further it has been found that a listener's ability to localize direction is greatly assisted by moderately reverbreverberation is fairly uniformly the reverberation is fairly uniformly dis-
tributed. To take advantage of this additional ambient directional information, it is necessary to record the reverberation accurately and reproduce it uniformly around the listener. The to one channel with no directional information does not satisfy the above criteria. Moreover, with current technology, artificial reverberation is also not satisfactory in this respect. a third velocity component whose axis lies in the vertical is required, corresponding to an upward facing velocity of figure-of-eight microphone, Z . The above requirements of human

Fig. 1. At low frequencies, direction is perceived by pressure (w) and velocity (x, y) effects.
Fig. 2. B-Format co-ordinates.

WIRELESS WORLD, OCTOBER 1979
suitable processing of pressure and
velocity signal comprent Ambisonic decoder such as that described in references 4 and 7-9. A similar decoder is used in the monitor/output section of the soundfield microphone control unit described later. More de-
tailed aspects of the soundfield microphone principle have been described in references 11 and 13 .
Microphone acoustic system The complete parameters for the design of a microphone to capture the comfollows. The four signals are known as B-format and soundfield signals should be recorded, stored and form. (Fig 2) .

W-pressure: omni-directional.
X -pressure-gradient (velocity): forwara fig.oof-eight.
Y -pressure-gradient (velocity): left-Z-pressure-gradient (velocity); upward fig-of-eight.

The height component \mathbf{Z} will probably not be used in reproduction commer cially in the immediate future although it is necessary to implement elevation
and dominance controls post-session when required and undoubtedly experimental reproduction systems will use it*
The B-format signals are required to be truly coincident and to have good polar patterns at all frequencies. It wa considered impractical to produce a microphone which generated B-format ignals directly; moreover the method chosen has a significant number of soundfield microphone uses a unique array of four sub-cardioid capsules mounted as closely as possible in a egular tetrahedron (Fig. - 3). The hould be imagined as four receiver of a sphere and associated circuits ar provided to compensate their practica spacing.
The advantages of this arrangement ar as followis: -
The four capsules are identica single-diaphragm cardioids of proven design.
They have individually a very good axial frequency response and the res-
ponse in other directions is regular when set up as sub-cardioids. This means that the polar patterns are wel efined at all frequencies.
Each of the four capsules contributes an equal component to each of the cancellation of endemic capsule varia-

The author is presently setting up a repro uction system which reproduces heigh the universal HJ surround sound encodin tandards for Ambisonic technology.

ions from the ideal, particularly when the
are.

Arrangement of separating th pressure and pressure-gradient com ponents into B-format allows each omponent to be compensate separately for frequency and phase resTe
Tetrahedral array used allows for which pairing along discrete axe alignment.
Closeness of the array allows pensations to be applied to produce

$$
\begin{equation*}
\text { or } \mathrm{Y}=L_{\mathrm{F}}-R_{\mathrm{B}}-R_{\mathrm{F}}+L_{\mathrm{B}} \text {. } \tag{2}
\end{equation*}
$$ B-format signal components effectively coincident up to about 10 kHz . This ontrasts vividy with conventiona ereo microphones where capsul to about 1.5 kHz .

The capsule signals are known as A-format and correspond to discrete practice except that they are tilted Fig. 3, to form the regular tetrahedron. The capsules are paired in the horizon tal plane as: left front up and right back up, right front down and left back down Examination of each of these pair tilted from the vertical so that if the output signals are subtracted within each pair, the two opposing cardioid patterns produce figure-of-eigh patterns whose axes lie along 45°
The amplitude of the figure-of-igh patterns thus produced will be reduced from the value obtained if the capsule pairs were back-to-back by $\cos \phi$, where ϕ is the an ${ }^{\text {(}}$ If 5 .
ded, a figure diagonal patterns are adforward is produced, with an increase
in sensitivity of about $3 \mathrm{~dB}\left(2 \cos 45^{\circ}\right)$ This corresponds to

$$
\begin{equation*}
X=L_{\mathrm{F}}-R_{\mathrm{B}}+R_{\mathrm{F}}-L_{\mathrm{B}} . \tag{1}
\end{equation*}
$$

Similarly a leftward figure-of-eigh $R_{\mathrm{F}}-L_{\mathrm{B}}$ figure-of-eight from the $L_{\mathrm{F}}-R_{\mathrm{B}}$ one. This corresponds to

$$
\mathrm{Y}=L_{\mathrm{F}}-R_{\mathrm{B}}-\left(R_{\mathrm{F}}-L_{\mathrm{B}}\right)
$$

The derivation of an upward figure of-eight pattern is produced from cap ule pairs $L_{\mathrm{F}}-L_{\mathrm{B}}$ and $R_{\mathrm{B}}-R_{\mathrm{F}}$ which pro uce diagonal figure-of-eight pattern

$$
\begin{equation*}
Z=L_{\mathrm{F}}-L_{\mathrm{B}}+R_{\mathrm{B}}-R_{\mathrm{F}} . \tag{3}
\end{equation*}
$$

The pressure or omnidirectiona

Fig. 5. Vertical capsule pair outputs.

Ken Farrar is managing director in charge
of production and design at Calrec Audio,
Ond Hebden Bridge, West Yorkshire. He is one of the founders of Calrec and is co-
designer of the Calrec range of capacitor microphones and audio designer of Calrec
mixing desks. He has spent the last year mixing desks. He has spent the last year
developing the sound field microphone
developing the sol
and control unit.
good to 20 kHz beyond which the output is rolled off at 12 dB /octave. contained in the A-B matrix module.

Microphone amplifiers

The microphone body contains four identical head amplifiers mounted on
wo similar printed circuit cards Each amplifier consists of a field effect transistor low-noise pre-amplifier with a gain of +11 dB . The f.e.t. stage drives wo operational amplifiers in an elecively adding a further +6dB to make $+17 \mathrm{~dB}(\times 7)$ overall (Fig. 7) Each preamplifier is phantom-powered along its. output balanced lines from the control stabilised within the microphone. Each circuit contributes to the polarising of all four capsules so that any or all circuits polarise all capsules. This ised supplies allows signal levels equivalent to 138 dB s.p.l. at 1 kHz to be handled before clipping occurs. The capacitance of a full length (150 metres) of cable restricts the output to 134 dB
s.p.1. at 10 kHz but this allows an s.p.l. at 10 kHz but this allows an
adequate margin over normal loud programme which rarely exceeds 110 dB s.p.l. (130 dB s.p.1. corresponds to a very loud sound). At 138 dB s.p.1. the microphone outputs are about 8 volts
r.m.s.
$(+20 \mathrm{dBm}$
approx $).$ The microphone signal output level is, in fact, about $5 \mathrm{mV} /$ microbar.
To be continued.

References

 The refearticle.

Radio for 2000 A.D.

How the WARCs began: background to the Geneva world conference

For ten weeks, from 24 September till 30 November, government representativ from 154 countries are meeting in by the International Telecommunication Union to re-plan the use of the radio spectrum. In particular the 2000 sere revising, harmonizing and international regulations on radio services, and a large part of their task is services. Decisions made by this World Administrative Radio Conference (WARC 79)* will have the force of an
international treaty and will set the pattern of radio use till the year 2000 or even later. The last conference with 1959. This article sketches the histor of the WARCs from the time they were started by a small incident at the turn of

T'S A. FAR CRY from this year' WARC, with its 154 countries an mmensely deliberate preparations worked out in great detail over severa ears, to the so of hat hastily con which started the whole series in 1903 This first conference, held in the mperial Post Office in Berlin, was in fact trigered by an embarrassing in mercial hostility and wounded feeling It was at the time when radio was radio legraphy, using spark transmitters or communication mainly between hips and between ships and shore sta ival wireless systems from Germany he Slaby-Arco-Braun system, operated by the Telefunken and AEG companies, nd from Britain the Marconi system pany of that name Both ber the com capture world markets in wireles equipment. Apart from the straightfor ward business competition the principa cause of bad feelings was that the Mar coni Company had a policy of discou system from communicating with other stations equipped with foreign installa tions. They felt that as they were the only company offering a complete
*See appendix for the agenda of the
conference.
conference.
ship-to-shore service they did not want to provide the rival organilities for which with helping to pay the upkeep.
The whole business came to a head in 1902 when Prince Heinrich of Prussia went on a visit to the USA and sailed for This ship was fitted with Marconi apparatus and during the voyage the Prince was treated to a demonstration of the then new technique of tuning (calificantly shore stations. But on the return trip to Germany Prince Heinrich sailed in the Deutschland which, although owned by he same shipping company, was fitte le lan from New York the Prince wanted to end a courtesy message back to Pre ident Theodore Roosevelt but found hat he was refused service because th pparatus on his ship was of differen quipped) shore station at Nantucket. Heinrich, being both a prince and a Pussian, was not amused and, back in ermany, the incident was regarded a ervice stung the Germans into callin or an international conference on wireless telegraphy, ostensibly for the ason that it was for the general good fankind. This duly took place in by representatives of German, Aust ria, Spain, USA, France, Great Britain Hungary, Italy and Russia. The first proposition put up by the German thernment, not unexpectedly, was that "Radio-telegrams originating from
and destined for ships shall be received and forwarded without regard to the system employed." A final agreed statement in similar terms was ratified Britain and Italy bexcept those of countries were heavily committed to the Marconi system. (In fact Britain and Italy were not fuil signatories to the "final protocol" of the conference but

Going through channel
From a technical point of view, a more significant decision reached by working or wireless tele that The
must be organized, as far as possible, in such a manner as not to interfere with hew working of other stations." Obviou uning had only just ben invented and he need for radio communication sys tems to work in separate channels, each efined by a strict band of frequencies, egan in a simple way the prin. Thu egulating the use of the radio spectrum y international agreement. The con rence, known as the Preliminary Conference on Wireless Telegraphy s the French delegate put it an "in eligent set of regulations" at a time when radio was still in its infancy. They ecame the basis for the internationa ince and are now have existed eve WARC 79.

First IRC.
The next world conference took place the preliminary nature of the 1903 gathering, was called the First International Radiotelegraph Conference. It was attended by 30 nations. This was closely modelled on the Convention of Petersburg of 1875 , which Union of St successful. Accepted by the Berlin Radio Conference, it embodied the fundamental structure for all subsequent conferences. Annexed to the decisions radio regulations which was also modelled on the telegraph regulations annexed to the Telegraph Convention. The Berlin Radiotelegraph Convention and the on 1 July 1908 for "a indefinto erfect on 1 July 1908 for "an indefinite
The principal issue at the 1906 conference, as it had been in 1903, was the question of obligatory intercom ferent equipment Thus ferent equipment. Thus, one of the
noteworthy provisions of the Berlin event was the obligation to connect the coast stations to the internationa telegraph service. Others were to give messages, and to avoid radio interference as much as possible. The con erence also decided that the Bureau of he International Telegraph Union

Questions of a more technical nature ere the main work of this 1906 con ent conferences. In particular it was quent conferences. In particular it was requencies. Two wavelengths for pub ic correspondence in the maritime services were established, and another was reserved for "services not open to public correspondence," meaning military and tations, such as their frequencies, call signs and radio systems, were to be sent the Berne Bureau. Procedure fo communication was laid down, giving coast stations priority of transmission
and the right to determine the order of receiving messages. Although the hoice of radio apparatus was unrestlown with the proviso that apparatus hould "keep pace with scientific and echnical progress"

Sea-going wireless

With the steady progress of radio ith the steady progress of radio second radio conference, in London, in 912. By thenthere were some 479 coast tations, 327 of which were for public 1 se, and 2752 ship stations, of which dence while the others were mainly aval stations. Aircraft had come onto he scene and some had been fitted with radio, but the conference considered it oo early to take official action in this houghts for the conference opened only three months after the sinking of he Titanic, perhaps the worst maritime disaster to date. Safety at sea through adiocommunication became a major General, in his opening address, said here was a pressing need for a "wider use of radiotelegraphy on the open sea and for the investigation of new Obligatory communication between ships at sea was consecrated in a new article, although the installation of adio aboard all ships could not be would trespass on the internal jurisdic ion of individual countries. How ever, the conference imposed a system f safety watches aboard ships carrying adio. Allocation of frequencies again he three new services of radio beacons, weather reports and time signals. Dec sions were also taken on the routing of adio telegrams whips and coa By the
By the time the next International Radiotelegraph Conference took place The forerunner of the International Telecom-
munication Union which came into being at the munication Union which came into being at
13t Internationa Telegraph Conference and t
3rd International Radiotelegraph Conferen
advances had been made in radio tech nology: sound broadcasting; radio in frequency spectrum intothion of the bands of 3 MHz and above. A new Radiotelegraph Convention was drawn up at the Washington conference together with new general Radio Regulations and Additional Radio
regulations. This new Convention inregulations. This new Convention in-
cluded "all radiocommunication stations established, or operated by the contracting Governments, open to the international service of public correspondence," thus including any new loped or could be developed later on. In addition, the scope was enlarged to include a large number of services not open to public correspondence and steps were taken to help eliminate in and also with a view to preserving the secrecy of radio communications. It was the 1927 Washington event that could be called the first truly modern telecommunications con
ference. Besides the 80 countries represented it included 64 private companies, broadcasting organizations, and other international bodies interested in radio, all of which attended in a nonvoting capacity. Foremost among the the International Radio Consultative Committee (CCIR) to "undertake the study of technical and other questions concerning (radio) communications" Another milestone was the drawing up
of the first frequency allocation table. It also agreed at Washington to examine the question of combining the radiotelegraph and telegraph conven tions, and it was decided that the next radio telegraph conference would be and time scheduled for the next meeting of the Telegraph Union. The 13th In ternational Telegraph Conference and the 3rd International Radiotelegraph Conference which met simultaneously legal entities; but liaison was esta blished by the setting up of joint com mittees to consider common questions. The most important achievement of the
Madrid conference of 1932 was the Madrid conference of 1932 was the
creation of a single convention con taining the general principles considered to be common to the telegraph, telephone and radio services.
By this time of course broadcasting wave transmitters of small power wer sending messages round the world. Radar had been invented, and in 1936 aircraft were being tracked on a cathode-ray tube at a distance of regular television broadcasts from Britain and Germany, and the Olympic Games were televised from Berlin. The first public video telephone service on lin and Leipzig in same year and was lin and Leipzig in same yen 1938.

WIRELESS WORLD, OCTOBER 1979
The 1938 Cairo Conference was mainly concerned with frequency allocation and also insisted on higher tech-
nical standards for transmitters through improved frequency tolerance and bandwidth tables. It produced the first-ever allocation of radio channels for intercontinental air routes in the for existing and future services. In fact this was the first allocation ever made in anticipation of the future. The CCIR was charged to study "operating questions" as well as technical radio ques-
tions, and the interval between its meetings was reduced from five to three years.

Post-war conference

In the summer of 1947 , some 1600 delegates from 76 countries gathered in Atlantic City, at the invitation of the
USA, for an ITU Plenipotentiary Conference, together with an administrative radio conference and an administrative high frequency broadcasting conference. These meetings attempted to bridge the gap caused by the second
world war, for many of the old problems had changed because of technical progress in intervening years since 1938. But the most important result of the Atlantic City event was the creation of
the International Frequency Registrathe International Frequency Registranotification and registration of frequencies in a master frequency list. Another important outcome was the
formulation of an entirely new volume of the Radio Regulations to deal with of the Radio Regulations to deal wit
the phenomenal expansion of radio.

Modern times

The main task of the last WARC, which opened in Geneva on 17 August 1959 and lasted four months - perhaps was to revise the Radio Regulations. This impressive document of 640 pages, with its 1632 paragraphs of regulations regulations, its 27 appendices, its 15 resolutions and 37 recommendations, deals with an astonishingly wide range af table of frequency allocations from
10 kHz to 40 GHz in the three defined regions of the world, with their 26 different users of the radio spectrum. Much space is devoted to the notification and registration of frequencies,
there is a table of international call signs to identify radio stations, and the ad ministrative provisions and working conditions of mobile and fixed radio stations are also carefully defined These and many other provisions, in communications, radio directionfinding, navigation for aircraft and ships, amateur radio, as well as other
regulations of a more technical nature regulations of a more technical nature,
make the Radio Regulations one of the most valuable tools now available for international co-operation.

The 1959 conference brought ITU ight into the space age, for the Rus 1957. In view of the rapid develotnik in communication with space vehicles, the conference decided to convene an xtraordinary Administrative Radio Conference in 1963, "to examine the technical progress in the use of radiothe results of technical studies by the CCIR . . ." and to decide on "the allocation of frequency bands essential for the various categories of space radiocommunication." Summing up the at the closing meeting, its chairman, Mr C. J. Acton, predicted that there would be an increase in tempo in the development and use of frequencies in the higher part of the radio spectrum. Some
of these developments, for example the use of telecommunications relating to outer space, could be of worldwide significance".
And now to WARC 79, which will be the largest gathering ever in the history
of the 114 -year-old ITU. The results of its work in revising the Radio Regulations and Additional Radio Regulations will not be known for some months, but in due course Wireless World will
report, in particular on the re-allocation of frequencies to existing services - for example to short-wave broadcasting, where a big increase in its share of the spectrum is likely - and on the allocation of
vices.

Appendix: Agenda of WARC 79 The agenda for WARC 79 is in the form of a
resolution of the the International Telecommunication Union. Nations for telecommunications. It was founded in 1865 to establish international regulations for telegraphy but later con-
cerned itself with telephony and finally radio. With 154 member countries, it has headquarters in Geneva which house its four the International Frequency Registration Board (IFRB), the International Radio Consultative Committee (CCIR) and the Interntative Committee (CCITT).
The resolution states that the agenda of
the conference shall be (edited here to
remove regulation numbers):

- to review and, where necessary, revise the provisions of the Radio Regulations relating
to terminology the allocation of to terminology, the allocation of frequency
tions.
- to review and, where necessary, revise the provificans applicable and recordine co-ordination, assignments except those Articles relating to a single service. to review and, where necessary, revise the sther articles applicable to more than one
service and provisions applicable to miscel-
aneous stations and to make and services
to make any necessary consequential the Radio Regulations and the Additional Radio Regulations resulting from
taken under agenda items, above.
- to review the report on the activity of the
IFRB and revise where IFRB and revise, where necessary, the provi-
sions relating to its methods sions relating to its methods of work- and
internal regulations.
of to study the technical aspects for the use of radiocommunications for marking, identi-
fying, locating and communicating with the
means of medical transport protected under the 1949 Geneva Conventions and any additional instruments of thse Conventions. of to take account of Resolution No. Sat-10 istrative Radio Conference, Geneva 1977, on the possible re-arrangement of the Radio Regulations and Additional Radio Regula-
tions, to make such consequential changes as may be necessary to harmonize the Radio Regulations as well as the Additional Radio
Regulations and to undertake any further Regulations and to undertake any further
necessary refinement and deletion of supernecessary refinement and dele
fluous or redundant provisions.
- to consider the proposals based on the
CCITT studies carried out in with resolutions adapted as the World Maritime Administrative Radio Conference, Geneva, 1974, on accounting for public correspondence in maritime radiocommunications, and on interpretation of the provisions
in the Radio Regulations affecting the public correspondence services and to take appropriate decisions.
recomensider the resolutions and the
recommendations adopted by administrative radio conferences, to take such action as may be considered necessary and to adopt such new resolutions and recommendations a
may be necessary.
- to propose to th
to propose to the Administrative Council programme for convenining future administrative radi
services.
- to provide, for the benefit of future ad
ministrative radio conferences, such guidelines as may be found necessary for
optimum use of the frequency spectrum.

Two-metre transceiver

continued from page 47

The modulated output from the fed via the panel operated squelch con- transmission when noise is present. Any (phase modulation) and all reception $\quad \mathrm{Tr}$, R 位, to wide band amplifier stages reports comment on the outstandingly good speech quality.

Squelch unit

Figure 4 shows the circuit of the muting unit which is mounted on a p.c.b. mea-
suring $33 / 4 \times 21 / 4 \mathrm{in}$. The noise output is suring $33 / 4 \times 21 / 4 \mathrm{in}$. The noise output is
taken pin 7 of the CA3089E and is

adjustment of R_{126}, the squelch pane control.

For components list see page 56
The author is indebted to R. Ray G8CUB and the article "A practica phase-locked loop for 2 metres", Radio Communication, October 1974, for th
initial information on the MC4044P.

References:

1. Thornley, G.R.B., G2DAF, single sideband transmission, Chapter 10 , Radio Com
munication Handbook. RSGB 2. Phase-frequency detecto 2. Phase-frequency detector MC4044P
Application Note, Motorola. 3. Linear integrated circuits Application
Note, CA3089E FM-IF Subsystems, R.C.A. 4. RCA m.o.s. field-effect transistor. 40673 4. RCA m.o.s. field-effect tran
Data Sheets, File No. 381, RCA. 5. Teal, G.S.M., Parasitic oscillations in v.h.f.
power amplifiers, Mullard Technical Communications No. 90 November 1967 . 6. Jansson, L.E. and Thompson, R.K., power
gain prediction for v.h.f. Class B amplifier transistors, Mullard T.echnical Communica-
tions No. 90 November

NEWS OF THE MONTH

To cut or spread-Home Office studies mobile radio techniques

Two completely opposite ways of making
more efficient use of the frequency bands more efficient use of the frequency bands
available for mobile radio are now being availaber for the Home Office's directorate
considered by
of radio technology. One is single-sideband of radio technology. One is single-sideband
operation, in which the bandwidth requireoperation, in which the bandwidh require-
ment is reduced theoretically by half; the
other is spread-spectrum operation, in which a very much greater amount of frequency
space is used but the signal/noise ratio can be space low.
very low.
Investigations into the feasibility of s.s.b. for mobile radio have been going on in
several research centres, and in our June 1979 issue, p. 96, we reported on demonstrations
by Philips Research Laboratories and Pye Telecommunications. Now the Home Offic
has stated its intention to start trials nex has stated its intention to start trials next
year in which s.s.b. with 5 kHz channel spacing will be compared with f.m. in 25 kHz channels and with a.m. or f.m. in 12.5 kHz
channels. They say that investigations have channels. They say there field trials will be
arrived at a stage wher useful but that this does not imply any commitment by them to s.s.b.
Another option, spread spectrum signalAnother option, spread spectrum signal
ling, is being studied at Leeds University on a grant from the Home Office. This technique
allows a spread-spectrum transmission to allows a spread-spectrum transmission to
share a channel with other types of transmission, e.g. television broaccasting, an

The Appleton and Rutherford

 laboratories merger-SRC chairmanIn November 1976 the Science Research
Council decided to set up a working party to look into the future of the Appleton Laboratory because for some time there had beid concern suouort for the national space
viding proper suppober science programme required for the 1980's
from the relatively limited resources available at Appleton. This was made worse
because at the same time the Engineering Board was seeking to increase the amount and the scope of work in radio propagation
and communications systems. Based on the working party's report, which was presented in July 1978 , further information supplied afterwards and the views of the SRC staff,
the Council decided in October 1978 that the Appleton and Rutherford Laboratories should be brought together under commmon management. It was also decided that the
Ditton Park (Appleton Laboratory) site Ditton Park (Applet as much work as pos-
should as sible transferred from there to the Chilton
Rutherford Laboratory) site (Rutherford Laboratery) site.
The SRC chairman. Professor Geoffrey Allen, said in a SRC Bulletin, June 1979, that the final decision was principally influenced by the advantages that were seen to be
obtainable for the major scientific programmes in space and communications on
may give better utilization of a multiplexed
communications channel. (See August 1978 communications channel. (See August 1978
issue, p. 50, for a report on work by the University of Bath and earlier referencesc.) Typically, it uses a pseudo-random subcar-
rier, modulated by the baseband information, which produces a no noiselike signal occupyying
a wide band of frequencies. This can be a wide band of frequencies. This can be
transmitted directly or may go through transmitted directly or may go through
further modulation processes. As a result of further modulation processes. As a result of

Broadcast-quality lincompex

Standard Telephones and Cables Ltd claim to
have introduced the world's first system on high frequency radio links to a standar acceptable to broadcast operators. During transmissions, received signal levels can change rapidily due, among other things, to
multipath propagation, prestnting problems multipath propagation, presenchn new system is claimed to eliminate these problems and also reduce the noise and interference
accompanying the signal. The system, called accompanying the signal. The system, called
radio-relay lincompex (linked compressor
and expander), is based radio-relay lincompex (inked compressor
and expander), is based on the conventional
ratios of less than unity. (In some applica-
tions this means that the signal can be protected from interception and, of course, the large amount of frequenency spectrum
occupied by the signal makes jamming diffioccupied by the signal makes jamming diffi--
cult.) At the receiving end the randomized signal is recovered by cross-correlation with a locally generated pseudo-random sequence
corresponding to the transmitted sequence. corresponding to the transmitted sequence.
To make this possible, of course, the local sequence has to be synchronized with the received sequence.
communications incormex
introduced in the late 'sixties
The equipment, which is intended for The equipment, which in intended for
point-to-point transmission over a 6 kHz audio channel, has been designed to conform generally to British Broadcasting Corpora-
tion specifications and, like the conventional lincompex, it consists of a transmit unit and a receive unit. Programme material is fed from
a, studio through the transmit unit and into a studio through the transmit unit and into
the transmitter. At the other end of the link, the receiver passes the signal to the receive
unit which feeds the reconstituted programme material to the radio station trans-
the signal quality. with the new system is high enough for it to compare with reception from a landline link or local transmitter. With
radio-relay lincompex, they say, it is possible to use lower power transmitters for the
studio to broadcast station link, and the studio to broadcast station link, and the
transmitter's range can also be increased. transmitter's range can ancations lincompex
Although the communicatic was put to the test by the BBC in about 1968 ,
it was used only rarely and, according to a it was used only rarely and, according to a
BBC spokesman, is not used at all now. The BBC spokesman, is not used at all now. The
new radio-relay lincompex has been designed for use between main radio stations' studios and local broadcast transmitters or distant
studios and main broadcasting stations, but studios and main broadcasting stations, but
it remains to be seen whether the BBC or the it remains to be seen whether the BBC or the
IBA will use it. STC say, however, that the new equipment has been used by export
customers and has proved to comply with the customers and has
BBC specifications.

Large PO orders for

 RedifonA recent order for Redifon Telecommunications Ltd to supply racking for a Post Office
radio paging contract has brought the total value of orders in the contract to close on $£ 1,500,000$. Each six-foot rack will carry two
transmitters and control unit, a power supply transmitters aerial changeover relay, alarm and
thele telephone units. An earlier order in the
contract was for Redifon's PT2100 v.h.f. 100 contract was fransmitters. The equipment is to be used in the stage
PO radio paging.
the next decade. The UK, he said, was at a grammes and there was already a growing from space. If the UK was to remain a major force in space science, he said, the SR C had to
have the capability to manage the develophave the capability to manage the develop-
ment of complex projects, especially if it was to exploit the new launching systems that would soon be available outside the UK. By
combining the experience and expertise of combining the experience and expertise of
the two laboratories the Council believed that it could create a team that could call on the resources required to provide a strong
focus for the support of space research in the focus for the support of space research in the
UK.
The Council did consider whether it would be possible to achieve the same result with-
out moving the teams onto one site, but they out moving the teams onto one site, but they
eventually came to the conclusion that this was not practical. It has been decided that the Appleton Astrophysics Research Divi-
sion from Culham will move to the Chilton sion from Culham will move to the Chilton
site in October 1980 and the UK team on the site in October 1980, and the UK team on the
Infra Red Astonomical Satellite during the
. same year. However, the majority of the
work on the Ditton Park site will not be work on the Ditton Park site will not be
moved to Chilton for about two years because accommodation is not yet ready for

WIRELESS WORLD. OCTOBER 1979

Ceefax and the deaf - experimental service

The potential of teletext as a method of increasing the usefulness of television pro-
grammes to people with impaired hearing grammes to people with impaired hearing
was demonstrated nationally on BBC-1 on September 2 for the first time, anywhere.
Viewers with teletext decoders will see Viewers with teletext decoders will see "subtitles" or captions, written to comple-
ment a film "Quietly in Switzerland", while those without decoders will not, of course, be distracted by the captions. Following, this first transmission, a series of panel games will
be captioned, having been selected for the be captioned, having been selected for the
treatment because of the small number of captions needed to explain the game, "Blankety-blank""
The BBC say that the timing of inserted information must be accurate to within one sixth of a second, which means that at the.
current rate of teletext data transmission current rate of teletext data transmission
(0.25s/page) it will be necessary to interrupt
normal page transmissions to synchronize
captoons with pictures. The effect on normal captons with pictures. The effect on normal
teletext transmissions will be an increase in access time of less than 5%. The idea of using teletext for captions on
live, unscrited trant live, unscripted transmission is brought no
nearer by the system to ensed, in which nearer by the system to be used, in which
captions are held in the Ceefax computer saptions for rapid held in the But the BBC, in colla-
boration with Leicester boration with Leicester Polytechnic, is experimenting with the use of the Palantype
shorthand system, and has designed a Palantype keyboard whose output is pro-
cessed by the Leicester computer to give a cessed by the Leicester computer to give a
promising quality of characters. promising quality of characters.
Peter Rosier or Bob Dulson at the BBC $(01-$ 7438000) would be happy to give advice on he facility, while those with decoders simply
dial page 170 on BBC-1 for the panel game
captions.

Weed control by microwaves

According to a report from Sydney, Austra- lian researchers are experimenting with

 lian researchers are experimenting withmicrowave weed control techniques in an microwave weed control techniques in an
effort to reduce the use of toxic herbicides. The engineers and biologists, at Deakin University, Geelong, Victoria, are carrying
out a one-year project to see whether some out a one-year project to see whether some
common weeds have a chemical composition
which will react to micrewaves in a different which will react to micpewaves in a different Power Sources Symposium Committee, P.O Data communicatio ds front-line troops
Front-line troops depend on good radio
communications, but often electrically-noisy enivironments make voice communication unreliable and time consuming. In an
attempt to overcome this problem, Racal Datacom Ltd have introduced a new, highspeed, burst data communications device
which, when used with existing tactical voice circuits, provides efficient communications in these conditions. The unit, called Merod (Message entry and read out device), has
been designed specifically for use by front line troops and can either be vehiclemounted or carried with a manpack radio. A
number of optional inbuilt modems enable number of optional inbuilt modems enable
Merod to be used with all u.h.f., v.h.f. or h.f. combat radio networks.
To provide an extremely high error pro-
tection the device uses cyclic block code and bit interleaving tecchinques, together with
synchronous transmission. Racal claims that synchronous transmission. Racal clairs that
for an average 3 dB signal-to-noise ratio which is below the limit for reliable, clea
voice communication by radio all transmis voice communication by radio, all transmis-
sion errected with a greater-than 99 per cent level of confidence. Burst transmission, at the maximum data rate allowed
by the communication system with which by the communication system with which
Merod is used, in addition to increasing the security of the communications by making
message interception more difficult message interception more difficult, enables
valuable air-time to be used more efficiently.
 communications circuit for less than onetwentieth of the time required using voice
communications over the same network, communications over the same network and store messages of up to 1000 characters in length on a 32 -character keyboard, as
shown in the accompanying illustration ready for transmission or alteration using the

Communicasons' '80 onference and exhibition
The IEE is organising an international conference as parganising an the internuational con
exhibition which is to be held at the Nations 80 exhibition which is to be held at the National
Exhibition Centre, Birmingham, England Exhibition Centre, Birmingham, England,
from April 15 to 18, 1980. The conference will from April 15 to 18, 1980. The conterence will
be held at the Metropole Hotel on the NEC
site and will cover three themes: public site and will cover three themes: public
telecommunications business comminicatelecommunications, business communica-
tions systems, and civil radio and emergency tions systems, and civir radio and emergency
communications. Papers will cover engineering, user and operating interests and
factors likely to affect overall strategy in factors likely to affect overall strategy in
each theme area.
way from crops. If this is so they believe
microwaves could then be used to control the weeds, leaving the crop unaffected. weeds, leaving the crop unaffected.
The leader of the project, Dr Van Nguyen Tran, a Vietnamese-born senior lecturer in the university's Electrical Engineering Divi-
sion, said that the research followed the successful use of microwave techniques in drying and in assisting the germination of different types of seeds. Dr Tran said that
they had found some types of seeds with which they had worked, particularly acacia which they had worked, particularly acacia
seeds, had chacteristics which could be
affected by microwaves.

Death of

John Scottuaggart

 was born in Bolton, was acwell-known inno-
vator and writer on radio since the early vator and writer on radio since the early
years. His interest in the subject started when he studied radio as a hobby in 1912 and his first article appeared in Wireless World in December 1914.
During the First World War he was an instructor to the First Army andin 1917 he published a series of thirteen Yy ticles on
valves. He obtained thirty pats from valves. He obtained thirty pdints from
about 1918 and in 1922 foundofre Radio
Press which published Modern Wireless Weekly. In the 19 Ness and 00,000 amateurs built radio sets using his STi00 design, according to one re re ust.
During the Second World War, Mr Scottaggart was a Wing Commander responsible or the majority of the radar ground stations
in England and Wales, and the (l) hing of
heir personnel. After this war he thed the their personnel. After this war he he hed the Admiralty Signal and Radar Establishment,
and retired in 1959. In 1963 the Italian President made him a Knight Officer of the
Order "Al Merito della Republica Order "Al Merito della Republica IItaliana,"
and in 1975 he was given an OBE for his "ervices to radio engineering" 1975 for his

Two-metre transceiver

Continued from page 53

Looking into current mirrors

Design criteria for circuits using matched collector currents
by F. J. Lidgey Ph.D., B.Sc. Oxford Polytechnic

Components list for Figs 2,3 and 4

Subject to the use of well-matched devices, the current mirror circuit can
perform some useful analogue functions. perform some useful analogue functions.
As well as acting as square and square root "calculators", they can perform in several standard amplifier circuits. This outline of the main features of current mirrors also contains practical
applications in the form of a current single-ended conversion circuit and a "mirror-aided" output drive stage.
THE CURRENT mirror circuit relies on the collector current matching of two when connected together base to base and emitter to emitter.
The collector current is related to the mitter base voltage in a forward biased

$$
I_{c}=I_{s}\left(e^{q} \frac{q^{2} \mathrm{~V}_{\mathrm{b}}}{\mathrm{kT}}-1\right)
$$

where q is electron charge, k Boltzman's constant, T the absolute temperature current, a parameter particular to the exact transistor. I_{s} is also a function of temperature in addition to the I / T facor of the exponential. compared with collector currents, then

$$
\begin{aligned}
& I_{\mathrm{x}}=I_{\mathrm{cx}}=I_{\mathrm{sx}}\left(\mathrm{e}^{\frac{q V_{\mathrm{be}}}{\mathrm{kT}}-1}\right) \\
& I_{\mathrm{y}}=I_{\mathrm{cy}}=I_{\mathrm{sy}}\left(\mathrm{e}^{\frac{q V_{\mathrm{be}}}{\mathrm{k} T}-1}\right)
\end{aligned}
$$

and $I_{\mathrm{x}}=I_{\mathrm{y}}$ for all temperatures if and
only if $I_{\mathrm{sx}}=I_{\mathrm{sy}}$ for all temperatures $i . e$. accurately matched devices in very close thermal contact.

Current matching (mirror image ize)
Manufacturers quote the matching of single-chip pair of transistors by th same collector currents.
i.e. $I_{c x}=I_{c y}$ for $\left(V_{b e x}-V_{\text {bey }}\right)=\left(\Delta V_{b e}\right)$

$$
\begin{aligned}
& \cdot I_{\mathrm{cx}}=I_{\mathrm{sx}} \frac{q V_{\mathrm{bex}}}{\mathrm{k} T} \\
& I_{\mathrm{cy}}=I_{\mathrm{sy}} \frac{q V_{\mathrm{bey}}}{\mathrm{kT}}
\end{aligned}
$$

where we have made the assumption
that $I_{\mathrm{cx}}, I_{\mathrm{cy}} \gg I_{\text {so }} I_{\text {sy }}$ which is invariably
true since $I_{\text {s }}$ is typically $10^{-12} \mathrm{amps}$ or less for a silicon device at room tem If V
If $V_{\text {bex }}=V_{\text {bey }}=V_{\text {be }}$ but ($\Delta V_{\text {be }}$) is quoted then we may estimate the error he following: mirror imaging size by he following:
writing $V_{\mathrm{T}}=\mathrm{k}_{\mathrm{T}} / q$ then for $I_{\mathrm{cy}}=I_{\mathrm{cy}}$

$$
\text { and so } \begin{array}{r}
I_{\mathrm{cx}}=I_{\mathrm{sy}} \mathrm{e}\left(\frac{V_{\mathrm{be}} \pm \Delta V_{\mathrm{be}}}{V_{\mathrm{T}}}\right) \\
I_{\mathrm{cx}}=I_{\mathrm{sy}} \frac{V_{\mathrm{be}}}{V_{\mathrm{T}}} \cdot \mathrm{e}^{ \pm} \frac{\Delta V_{\mathrm{be}}}{V_{\mathrm{T}}} \\
I_{\mathrm{cx}}=I_{\mathrm{cye}} \pm \frac{\Delta V_{\mathrm{be}}}{V_{\mathrm{T}}} \\
\frac{I_{\mathrm{cx}}}{I_{\mathrm{cy}}}=\mathrm{e}^{ \pm \frac{\Delta V_{\mathrm{be}}}{V_{\mathrm{T}}}}
\end{array}
$$

at room temperature $V_{\mathrm{T}} \simeq 26 \mathrm{mV}$ so $\Delta V_{\text {be }}$ of $\pm 2 \mathrm{mV}$, which is typical fo reasonably well-matched transistors, gives

$$
\frac{I_{\mathrm{cx}}}{I_{\mathrm{cy}}}=\mathrm{e}^{ \pm} \frac{2}{26} \cdot \frac{I_{\mathrm{cx}}}{I_{\mathrm{cy}}} \simeq 1 \pm \frac{1}{13} \cdot \frac{I_{\mathrm{cx}}}{I_{\mathrm{cy}}} \simeq 1 \pm .077
$$

$$
\begin{aligned}
& \text { cy. } \pm 7.7 \% \text { error, which is quite sub- } \\
& \text { i.e. }
\end{aligned}
$$ stantial.

Fig. 2.
mirror

Thermal matching (mirror buck

 ling)The relative thermal tracking is not as bad as might at first be expected. Con sider

$$
I_{c}=\frac{I_{\mathrm{s}}}{} \frac{V_{\mathrm{b}}}{V_{\mathrm{T}}}
$$

It is convenient to discuss the tem erature variation necessary in $V_{b e}$ in rder to keep the collector currents th t a temperature ${ }_{\text {bex }}=V_{\text {bey }}$ for $I_{c x}=I_{c y}$

$$
I_{c x}=I_{\text {cy }}=I_{\text {sx }} \frac{V_{\text {bex }}}{V_{T}}=I_{\text {sy }} e^{\frac{V_{\text {bey }}}{V_{T}}}
$$

Defining the input offset voltage as
for $I_{c x}=I_{c y}$ we are interested in the for $I_{\mathrm{cx}}=I_{\mathrm{cy}}$ we are interested in the variation of this voltage with tempera
$\frac{\mathrm{d} V_{\text {os }}}{\mathrm{dT}}=\frac{\mathrm{d}}{\mathrm{dT}}\left(V_{\text {bex }}-V_{\text {bey }}\right)$
$=\frac{\mathrm{d}}{\mathrm{dT}}\left(\mathrm{V}_{\mathrm{T}} \ln \frac{I_{\mathrm{cx}}}{I_{\mathrm{sx}}}-V_{\mathrm{T}} \ln \frac{I_{\mathrm{cy}}}{I_{\mathrm{sy}}}\right)$
$=\frac{V_{\mathrm{T}}}{\mathrm{T}}\left(\ln \frac{I_{\mathrm{cx}}}{I_{\mathrm{sx}}}-\ln \frac{I_{\mathrm{cy}}}{I_{\mathrm{sy}}}\right)$

$$
+V_{\mathrm{T}}\left(\frac{1}{I_{\mathrm{sx}}} \frac{\mathrm{~d} I_{\mathrm{sx}}}{\mathrm{~d} T}-\frac{1}{I_{\mathrm{sy}}} \frac{\mathrm{~d} I_{\mathrm{sy}}}{\mathrm{~d} T}\right)
$$

the second term is zero since from the physics of the device it may be shown

$$
\frac{\mathrm{d} V_{\mathrm{os}}}{\mathrm{dT}}=\frac{V_{\mathrm{T}}}{\mathrm{~T}} \ln \left(\frac{I_{\mathrm{cx}}}{I_{\mathrm{sx}}}-\ln \frac{I_{\mathrm{cy}}}{I_{\mathrm{sy}}}\right)
$$

$$
=\frac{V_{T}}{T}\left(\frac{V_{\text {bex }}-V_{\text {bey }}}{V_{T}}\right)
$$

$\frac{\mathrm{d} V_{\mathrm{os}}}{\mathrm{dT}}=\frac{V_{\mathrm{os}}}{\mathrm{T}}$
so if $V_{\text {os }}=V_{\text {bex }}-V_{\text {bey }}= \pm 2 \mathrm{mV}$
then $\frac{\mathrm{d}}{\mathrm{dT}} V_{\mathrm{os}}=\frac{ \pm 2}{300} \mathrm{mV} /{ }^{\circ} \mathrm{C}= \pm 6.7 \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Clearly the currents will track well despite a $\Delta V_{\text {be }}$ of $\pm 2 \mathrm{mV}$ but this anathe same temperature. A difference in temperature of a degree or so makes a vast difference in the current mirroring the exponential as well as in I_{s}.

A discrete "mirror"
If discrete transistors are to be used then we can make use of a form of current mirror by using well-matched resistors in the emitter lines. If we can again neglect base currents

$$
I_{\mathrm{x}} \sim I_{\mathrm{sx}} e \frac{V_{\text {bex }}}{V_{\mathrm{T}}} ; I_{\mathrm{y}}=I_{\mathrm{sy}} \mathrm{e} \frac{V_{\text {bey }}}{V_{\mathrm{T}}}
$$

but

$$
\begin{aligned}
& V_{\mathrm{z}}=V_{\text {bex }}+I_{\mathrm{x}} R=V_{\text {bey }}+I_{\mathrm{y}} R \\
& \cdot I_{\mathrm{y}}=I_{\mathrm{x}}+\left(\frac{V_{\text {bex }}-V_{\text {bey }}}{R}\right)
\end{aligned}
$$

From which we see that if we have $\Delta V_{\text {be }}$ of say $\pm 10 \mathrm{mV}$ for a poorly matched pair, then where R is $10 \mathrm{k} \Omega$ $I_{\mathrm{y}}=I_{\mathrm{x}} \pm 1 \mu \mathrm{~A}$
and so for currents substantially greater than $1 \mu \mathrm{~A}$ the error is small and may be

Taking base currents into account Allowing for the base currents then the diode-strapped transistor current I_{x} in Fig. 1 supplies base current for Tr_{x} and
Tr_{y} and so clearly since our mirror Tr_{y} and so clearly since our mirror $I_{y}<I_{x}$, assuming perfect matching.

Examining the currents, since $V_{\text {bex }}$ $=V_{\text {bey }}$ and assuming matching does
exist then $I_{\mathrm{bx}}=I_{\mathrm{by}}$. Given that the current gains may not be exactly the same then

$$
\begin{array}{r}
I_{x}=I_{y}+\frac{I_{y}}{\beta_{y}}+\frac{I_{y}}{\beta_{x}} \\
\frac{I_{x}}{I_{y}}=1+\left(\frac{1}{\beta_{y}}+\frac{1}{\beta_{x}}\right)
\end{array}
$$

Obviously what is needed to ensure a better match of I_{x} and I_{y} is to make β_{x}
and β as large as possible Alternatively we need to buffer I_{x} so that it does not constitute the source for all the base currents.

Fig. 4. Spreading current drain by adding a buffer stage

Further calculations can reveal information about matching error.
$I_{\mathrm{w}}=\frac{1}{\left(\beta_{\mathrm{w}}+1\right)} \cdot I_{\mathrm{y}}\left(\frac{1}{\beta_{\mathrm{x}}}+\frac{1}{\beta_{\mathrm{y}}}\right)$
$I_{\mathrm{x}}=I_{\mathrm{y}}+I_{\mathrm{w}}$
$=I_{y}\left(1+\frac{1}{\left(\beta_{w}+1\right)}\left(\frac{1}{\beta_{x}}+\frac{1}{\beta_{y}}\right)\right)$
From this we can see that the previous error between the matching of I_{x} and I_{y} due to the base current loading of I_{x} is reduced by a factor of $\left(\beta_{w}+1\right)$. We can go on doing this trick by using a Dar-
lington for Tr_{w} but then the reverse lington for Tr_{w} but then the reverse lington circuits and so it is sensible to limit this buffering to only one or two transistors in the position occupied by transistor Tr_{w}

Some useful applications of current mirrors
(a) Current sink/source conversion In the circuit of Fig. 5 the current sink I_{1} is converted to a current source of the same value. The reverse is also possible where a current source may be conextended to form a voltage-to-current converter.

Fig. 5. Current sink/source circuit

Fig. 6. Voltage to current converter

In Fig. 6, $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and R form a high input impedance (Darlington Tr_{1} and Tr_{2}) transconductance stage which is is mirrored into a current source at Tr_{4}.
b) Differential to single-ended conversion ferential amplifier shown in Fig 7

Fig. 7. Basic differential amplifier
The small signal voltage gain to a differential input V_{i} is

$$
A_{v}=+1 / 2 \frac{\beta}{(\beta+1)} R g_{m}
$$

Where g_{m} is the transconductance of a single transistor. Compared with one common emitter transistor we lose half
the gain because V_{1} is driving both the gain because V_{i} is driving both
transistors equally yet we are only taking the output from one. This problem can be rectified using a current mirror as shown in Fig. 8 .

Fig. 8. Increasing gain by the use of a Fig. 8. Increasing
current mirror
Point A on the circuit remains at a constant voltage independent of V_{i} (i.e. are all well matched. Then, as V_{i} increases in the direction shown, $I_{\mathrm{c} 1}$ increases and $I_{c 2}$ decreases. As $I_{\mathrm{c} 1}$ in creases this is mirrored by an equal increase in $I_{c 4}$. At the junction of the ncrease of current from Tr_{4}, yet Tr_{2} is decreasing its current. Clearly both components sum into R giving the full differential gain of

$$
A_{v} \simeq\left(\frac{\beta}{\beta+1}\right) \mathrm{Rg}_{\mathrm{m}}
$$

There is a change in the common mode handling capability of the circuit which must be looked at closely if the circuit is to be used without further modification. This circuit technique is commonplace the standard 741.'
Continued on page 68

FROM HERE...

TO HERE..

NEED NO LONGER TAKE AN ETERNITY OR COST A FORIUNE

Time is money and with conventional custom designs, the process from the detailed logic design through to layou of the chip can take 6 to 9 months of total engineer involvement.

The following stages of mask making, prototypes, and test progage of rapidly changing technology two years to production is an eternity both commercial and economical sense. This is why GEC Semiconductors have developed the Celimos system, which allows customers to benefit from special LSI designs with a much lower
starting fee and in a much shorter time
Once we have approved logic diagrams, our computer will proces the design through a series of programmes, which will layout the circuit onto the chip. The whole sequence wil not take more than a few hours of computer and engineering time. Th logic to samples is within 12 weeks. Hardly an eternity.

If you feel the Cellmos system can help with your problem, please write o phone our sales office for further details or even a demonstration.

GECS Semiconductors Limited East Lane, Wembley Tel: 01-904 9303 Telex 28817

NEW! BIG SCREEN'SCOPE

LARGE SCREEN Full $8 \times 10 \mathrm{~cm}$ ($5^{\prime \prime}$ diag.) flat face display. Internal graticule eliminates parallax error. makers ease ins time measur ment.

SMALL SIZE UNIT Only $12^{\prime \prime}$ deep $\times 11^{\prime \prime}$ wide $\times 63^{\prime \prime}{ }^{\prime \prime}$ high overall. Occupies little bench space. No need for trolley. Weighs only $151 / 2 / 2 b s$.
LOW COST
BANDWIDTH D.C. to 12 MHz
SENSITIVITY $5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$

ACCURACY $\pm 3 \%$
XY MODE Horizontal signal viaCH1
TIMEBASE $\cdot 5 \mu \mathrm{~S} / \mathrm{cm}$ to $\cdot 5 \mathrm{~S} / \mathrm{cm}$ plus $\times 5$ expansion ALT/CHOP Automatic

TRIGGER Internal from CH 1 or CH 2 or external. Internal TV frame or line. Auto ensures sweep in absence of signal

CALIBRATOR Output for probe compensation or Y amp calibration

Send for details and prices now to:
FARNEL INSTRUMENTS LIMITED, SANDBECK WAY WETHERBY, WEST YORKSHIRE LS22 4DH. TEL: 0937 63541 TELLEX: 557294 FARIST G. LONDON OFFICE TEL: 01-864 7433

Speaker directivity and sound quality

Effects of variation in the loudspeaker polar diagram with frequency

The best examples of current loudspeaker design have reached the stage of development where only minor
improvements in the overall sound quality can be achieved by further extension or smoothing of the frequency range, or by reduction in the well known Doppler distortion. One distortion, using the word in its widest sense, that has no received its due share of attention is the effect on sound quality of the variation in he speaker polar diagram with
frequency. This is discussed in th present article, and also methods of measuring the polar distribution of sound pressure and sound power. "Directivity

A TYPICAL single cone loudspeaker in a closed housing will radiate isotropically at low audio frequencies, the ound pressure being substantially constant at all points equi-distant from the back of an enclosure that only employ a single forward facing unit. As the requency is increased the solid angle into which the sound power is concen trated in front of the loudspeaker slowly $10^{\circ}-15^{\circ}$ at frequencies above 5 kHz . This is a fundamental property of all plane surface disk radiators. The soun pressure level produced by an ideal solid 30° off axis at a frequency of 1 kHz , the diaphragm being one wavelength in diameter at this frequency
The sound pressure generated by a practical loudspeaker diaphragm doe in the azimuthal angle as that from the rigid disk. Thickness and density graduation, the use of radial and circumferential ribs and similar design ricks can be used by the cone designe diaphragm with increase in frequency and this helps to maintain constant the sound pressure at points well of the xis. At first thought it would appea that the reduction in the off-axis output consequence to a listener seated on the axis, but experience shows that the effects on the sound quality are indeed listener. A loudspeaker having a good
flat) axial frequency response but poor off-axis response sounds 'hard and iring' to a listener seated on the axis, while the stereo image tends to jump
about with changes in the spectral content of the programme. It is interesting to consider the possible reasons for the quality of the polar distribution on the hat is rarely dise han a comment that "cymeater depth etter when yent cymbals sound speaker, an aspect of in front of the hat is obvious and will not be further expanded."
The sounds emitted by a loudspeaker arrive at the listener's ears by three outes that require separate considera is to be understood.
Group 1. In this group are the soun that arrive at the listener's ears by the direct and shortest route from the oudspeaker and undergo little modifidaries have had no opportunity of affecting the characteristics of the sound. The room acoustics have no effect on these direct sounds.
Group 2. These sounds arrive at the listener's ears during the first few from the room boundaries close to the loudspeaker. At each reflection from a oundary the frequency spectrum modified by the acoustic characteristic which the reflection takes place. general the higher frequency com ponents in the spectrum suffer greater attenuation at each reflection than do the lower frequency components but eflections have frequency spectr almost identical to those of the direc ounds which they follow with a delay fonly 2 -5 milliseconds.
Group 3. These are the sounds that eflections, i.e. after at least man wenty reflections from the room bundaraies remote from the loud peaker. This is the generally reverberant sound that is usually considered to noted in the preceding paragraph the higher frequencies are generally more heavily attenuated at each impact with
of the reverberant sound gradual changes during the decay of the sound he later reflections having reduc nergy in the higher frequencies ower, the reverberant sounds differ in another and very significan way. The sound field in a room does no become increasingly diffuse with the but instead becomes increasingly or ered, with the sound energy conce trated in well defined spatial pattern even at the lower frequencies. Th sound energy are concentrated along the three axes of the room in the requency bands for which the room length, width, and height are one ha wavelength and at the harmonics components of the spatial pattern requencies that are determined by combinations of the axial dimensions o he rooms and further groups with requencies determined by combina everberation is not the decay of diffuse sound field but the decay of well defined pattern of sound distribu on over the whole of the room volum The sound field becomes less diffuse and with the sound energy concentrated in the narrow frequency bands that con stitute the modes of oscillation charac eristic of the room. This is particularly true at the
ack to consis digression we can go ere consider the effect of the loudpund field diagram on the resultan sound field in the room. There will clearly be no significant effect on the the most direct path, for the room boundaries will have had no oppor unity of reacting on the sound.
The sounds in group 2 that arrive by the second route during the first few
milliseconds following the arrival of the direct sound will be affected by the polar distribution of the loudspeaker. At those frequencies at which the polar distribution is very narrow, generally energy arriving during the first few milliseconds will be decreased, for less energy will strike the room boundaries
reflected from these boundaries. Thus the first effect of a narrow polar diasound in the reflections occurring during the first few milliseconds. If the loudspeaker is pointing down the length of the room the sound energy in the reflection from the far end walls will be ncreased.
The sound energy in the 3rd group of a loudspeaker having a narrow polar diagram. Assuming the simplest possible case where the direct sound energy is all concentrated in a forward facing down the room, there is then no energy fed directly into the resonant room modes other than the main length mode and its harmonics. Those modes of room oscillates along the width and height. axes of the room receive no energy from the loudspeaker untilit is scattered into these modes after many reflections from the boundaries at the ends of the height modes will have no effect in colouring the early sounds but will colour the sounds arriving at the listener's ears 20 to 300 ms after the direct ound.
In contrast a loudspeaker radiating isotropically will feed sound energy into all the room modes immediately it is
excited. This energy will then be con-
centrated into all the mode characteris ics of the room shape and the soun decay at a rach mode will grow and absorption in that particular mode Each individual mode of resonance wil have its own characteristic reverbera ion time with the important difference excited almost immediately the loud speaker is excited.
Thus a listener sitting on the axis of a loudspeaker having a narrow polar dia ram will hear sound that differs from wide polar diagram, even though both speakers have a flat on-axis response. If the polar diagram is narrow the earlie eflection will be minimised and the ater reflection will carry most of the covers a wide angle then the sound energy tends towards being uniformly distributed over all the early and late reflections, the sound energy/time dis ther than the loudspeaker polar dia gram.
A loudspeaker having a "narrowish polar diagram invariant with frequency will always tend to minimise the effec of the room acoustics on the quality o
sound reproduced in the room. Dipole radiators such as the electrostatic speaker or a cone type loudspeaker in lat baffle will sound rather 'dry' in som

Fig. 1. Typical polar diagram, giving variation in sound pressure level at points relative to the

Wheless worlo, october rooms, particularly those with a shor reverberation time. A dipole radiato has no radiation in the plane of the
diaphragm and thus provides the minimum excitation of the height and width room modes. Appropriate placement of the speaker allows one to vary the
modal excitation to suit the room chamodal excitation to suit the room cha by a speaker having a wider polar diagram.
The obvious alternative, the use of a The obvious alternative, the use of a
loudspeaker system that radiates equally in all directions, proves to be
almost equally unacceptable the stereo image being diffuse and only vaguely located. It is significant that over the last twenty years many loudspeaker have appeared on the market with claims to a high degree of uniformity of
the sound power distribution round the loudspeaker, but almost all of them have vanished from the field after a relatively short burst of popularity. This suggests that there is some optimum distribution of sound energy in front of
a loudspeaker if the stereo image is to be a loudspeaker if the stereo image is to
well defined and the sound quality is to we 'soft and non-tiring' to the listener. It would be of considerable value if the optimum polar distribution for a domestic speaker could be specified, but so far this has eluded definition, for it is
difficult in the present stage of the art to design an experiment that will provide an even moderately unambiguous 'answer to the question, particularly in small domestic sized rooms. A start can be made by outlining the methods of speaker.
The variation in sound pressure leve at points off the axis of a loudspeaker is generally indicated by a polar point typified by Fig. 1, showing the sound pressure level round the loudspeaker at
a few representative frequencies in the azimuthal plane. This plot does no make the performance particularly obvious when this has to be subjectively judged. The sound pressure level usually changes much more rapidly
with change in the vertical angle than with changes in the azimuthal angle Thus any specification of the polar distribution over the space in front of the loudspeaker requires polar diagrams in two planes at least, but even given this, visualise the distribution over the intermediate angles. It requires even more mental gymnastics to come to any reasoned decision about the subjective with frequency. The off-axis frequency response of most speaker systems is markedly more irregular than the axial frequency response, but the irregularities may not be obvious for the
standard form of polar diagram displays the performance at only a few frequen cies.
An alternative presentation that has several advantages is to plot the
frequency response on the speaker axis

Fig. 2. An alternative presentation of speaker directivity to that in Fig 1. The peaker axis and for other angular dis speaker axis and for
tances from the axis.
and at 15° or 30° intervals off the axis much as shown in Fig. 2. This makes the change in the frequency response off axis easier to visualise, but it is stil necessary to have a second set of re sponse curves to illustrate the change in frequency response with change in th
rutcal angle.
possible presentation has appeared and as it has several advantages it deserve consideration. The basic change is the use of sound power rather than sound change in output with change in the angular displacement of the listener from the axis.
If the sound pressure distribution round the loudspeaker enclosure is no
uniform at all frequenciec measured on the axis of the system, it will be obvious that the total radiated sound power will decrease with increase in frequency. Thus a flat axial sound pressure/frequency response usually frequency response is not uniform but falls off with increase in frequency. Conversely a flat (uniform) sound power/frequency relation usually indifrequency response rises with increasing frequency
The extent to which the sound power/frequency response varies with frequency can be conveniently indicated by quoting either the "Q" or the
Directivity Index ($\mathrm{DI}=10$ log " O ") of the loudspeaker. As the use of sound power in specifying speaker directivity is probably a new concept to many readers (and " Q " an unfortunate choice of symb Sound power is proportional to the sound pressure squared so the parameter " Q " is the ratio of the total power actually radiated to the power
that would be radiated if the axial sound pressure was maintained constant all round the loudspeaker. When this uniformity of distribution is achieved the
loudspeaker has a "Q" of 1 . It is a condition that is usually approximated atlantic term but the "Directivity Index" appears more appropriate in view of the prior use of Q to describe the Fig. 3 shows the " O "/frequency relation for a well-known three-unit system when measured in the open air. When measured in a room with the speaker back against a wall the " Q " will be
increased in the low frequency range for the working " O " is affected by the proximity of the walls. However, when considering the effect of the speaker directivity on the acoustic performance of the room it is the " Q " measured in the
open air that is significant and not the " Q " that results from the speaker radiation being controlled by the room walls.
In the higher frequency band, and assuming that the speaker system has a
flat frequency response when measured on the axis, the off-axis output will fall away and in consequence " Q " or "DI" will rise. A typical current speaker system will have a " Q " around 4 at Omni-directional loudspeakers have been tried by several speaker manufacturers and are generally considered unsatisfactory but the reasons for this tion. Increasing the directivity speaker system results in a design that has the radiated acoustic power concentrated in a solid angle less than 360°

Fig. 3. Plot of "Q" against frequency for a typical three-unit speaker system.
and this has proved advantageous. It might even be said to be essential if a good stereo image is to be obtained.
Unfortunately if has not yet proved possible to design a loudspeaker that has uniform directivity at all frequencies in the audio band. Though it has not proved possible to achieve this uniform ity of distribution it is interesting to that it should be the target.
Achieving a good solid and firm
stereo image requires a high ratio of stereo image requires a high ratio of direct to reflected sound, for it is only the direct sound that carries the basic
information about the location of the stereo image in the space between the loudspeakers. The sound reflected from the room boundaries, particularly those in the vicinity of the speaker, can only serve to dilute the basic directional
information. Thus to achieve a stereo image we need to minimise the amount of reflected sound. One obvious way of achieving this is to design the loudspeaker and locate it in the room in a position that minimises the amount of
sound falling on the room walls. The required result cannot be achieved by covering the room surfaces with sound absorbent, attractively simple though this solution may appear, for this an increase in speaker directivity increases the intensity of the direct sound and reduces the intensity of the early reflections and it is this we wish to
achieve. achieve.

Room sizes

In large rooms of average proportions where the working " Q " is no significantly affected by the proximity involving the subjective judgement o the acceptable loss in speech intel igibility suggests that a "Q" in the is about right. In domestic sized rooms Q" around 10 appears reasonable but more evidence on this aspect is re quired. This is not easy to obtain the " Q " and in the present stage of ou knowledge it is impossible to change Q" without affecting several othe parameters that affect the soun quality. Uniforion over the frequency band between 500 Hz and 10 kHz seem more important than the absolut value.
At present it appears fundamentally impossible to design a speaker with the audio frequency band. Constant directivity demands a sound radiato having a diameter that is inversely pro portional to frequency and this we can not achieve in a practical design. Howimpossible it may be possible to circumvent the problem, an aspect

[^1] B 1
 2 . .

 -

Sidebands as phasors

Depicting the mechanism of modulation: 2 - frequency modulation
by J. M. Osborne M.A., F.Inst.P. South London Science Centre

A previous article, in the September issue, outlined the general principle of using phasors to represent carries this could be applied to amplitude modulation, d.s.b. and s.s.b. The author now goes on to use this method of represe
frequency modulation.

IMAGINE A PHASOR swinging like a pendulum. The fact that it is looked at sideways to ge the equilibrium position of our phasor as horizontal (my whim) whereas of course the bob of a pendulum hangs vertically. We have a phasor which is periodically gaining and losing phase (θ)
relative to an imaginary reference phasor. For comparison with the situation of Fig. 1 (September issue), we might consider the reference phasor as representing a carrier of 1 MHz and the swinging phasor as having a period of
1 ms , i.e. a frequency of 1 kHz . The swinging phasor represents a phase modulation of θ as shown in Fig. 12(a) That it also represents frequency modulation is easily established when is consider the phasor at the instant tion. In one direction (anticlockwise) it is rotating faster than the imaginary reference phasor and so has a higher frequency; in the clockwise direction it reaches the extremities of its swing the phasor is stationary and has the same requency as the reference. This is shown in Fig. 12(b). The frequency is aining and losing on the 1 MH modulation at 1 kHz of a carrier of 1 MH as shown diagrammatically in Fig. 12(c) - diagrammatically because we canno how one thousand cycles of the carrie in one millisecond on our time (t) axis.
So far we have shown the identity in his simple case of phase and frequency modulation. The same swinging phasor of Fig. 11 gains and loses a phase angle θ at the modulation frequency (Fig. 12(a)) on the reference (Fig. 12(b))
I have said nothing about the depth of frequency modulation, only that f.m. Is present. The depth (or should I say degree) of phase modulation is θ. (See derived by any one who has studied the
simple pendulum and s.h.m. at school, The relation is $\Delta \mathrm{F} / \mathrm{f}=\theta$ where ΔF is the tracted from the carrier frequency F_{0}. The angular swing θ of the phasor represents the depth of phase modulation (that is θ is proportional to the amplitude of the modulation). ΔF represents the depth of frequency
modulation (that is ΔF is proportional to the amplitude of the modulation).

Fig. 11. A swinging pendulum as the model for a swinging phasor (right), except that the phasor is shown on its side instead of hanging vertically. This
represents a signal whose phase angle repreriodically gaining and losing relative to an imaginary reference phasor.

he higher the modulating frequency he faster the phasor swings back and forth through its angular (phase) displacement θ and faster it swing through the mid position. As indicated above the faster it swings, the greater below the carrier frequency F_{0}. (See Appendix 2.)
The relation between f.m. and phase modulation (p.m.) is illustrated by con modulation by a square wave. In Fig. 13(a) the square wave suddenly flips the frequency from the carrier F_{0}. to either $F_{0}+\Delta F$ or $F_{0}-\Delta F$. In the first case the phasor is rotating faster than the is gaining linearly with time. Conversely, during the negative portion of the square wave it loses linearly. The variation of phase with time is therefore f sawtooth form, as shown in 13(b)
If the phase is modulated with a frequency remains constant during the time the phasor is advanced or retarded, but (in theory at least) it jumps instantchanges instantaneously to $+\Delta \theta$, and likewise to minus infinity during the phase excursion to $-\Delta \theta$ (see Fig. 14(b)). The difference between p.m. and f.m. contained in the modulation index is
easily thought of in phasor terms. As we increase the amplitude of the modulating signal we increase θ in p.m. and ΔF in f.m. If we increase the frequency of the modulating signal, ΔF remains constant but θ increases in ΔF remains constant but θ increases in

Fig. 13. Square wave frequency modulation in shown at (a) and the angle at (b)

waves, upper and lower sidebands and carrier in quadrature, is to produce a approximately constant amplitude. For phase swings of up to $\pm 30^{\circ}$ the amplitude is generally acceptable as have p.m. In engin this means that we have p.m. In engineering practice this
can be achieved from, but shifted 90° in phase from, the original carrier. (The original carrier is that used to drive the
balanced modulator, the output of which leaves only the sidebands as the carrier is balanced out.) Such a system
of p.m. provides the core of the 'Armof p.m. provides the core of the 'Armstrong' f.m. modulator. However, as θ is
proportional to the modulating amplitude, this gives $\Delta F / f$ and not the ΔF required for f.m. The modulating signal, in practice, is processed by a suitable frequency/gain characteristic in the modulanged amplifier which precedes the balanced modulator. The original modulating signal is no longer constant with rising modulating frequency but is inversely proportional reduction in the reactance of the capacitor, which decreases output as f increases. The output of the combined modulating amplifier, R C, balanced modulator is added to the 90° phase mintitude frequency modulated signal of the required characteristic, $\Delta F / f \propto$ This is shown in Fig. 15(b). As described must be limited to $\pm 30^{\circ}$ if the result ant is to remain of approximately constant amplitude. The approximation is
that $\tan \theta \bumpeq \theta$ (which is true for small values of θ) as may be seen by com. paring the Fig. 9 resultant with the ideal

Fig. 15. (a) Circuit that processes a inversely proportional to frequency. (b) Practical system in which output from a modulating amplifier and the (a) circuit is added to 90° phase shifted - carrier to give
swinging phasor of Fig 11, shown swinging phasor
For a given amplitude of frequency modulation, θ grows as the modulating frequency decreases. For a given Δ (which is directly proportional to amplitude of modulation in f.m.) the phasor has to swing at a corresponding speed back and forth through the equilibrium position, i.e. the instant when the phasor is passing through the lower the modulating frequency (i.e. the period of swing of the phasor) the further it swings before coming to rest (i.e. the bigger is θ, the phase excursion). The consequence of this is that only
narrow band (small value ΔF) f.m. is possible with this technique since θ is limited to $\pm 30^{\circ}$ or so. However, by carrying out the process outlined in Fig 5(b) at a low crystal oscillato frequency and then multiplying the of doubler, tripler stages etc. a wide band (large ΔF) f.m. signal can be obtained in, say, the v.h.f. band. Th crude, if obvious, technique of directly variable reactance across a tune circuit (e.g. a capacitor microphone as part of the oscillator LC circuit) leave he carrier frequency too unstable fo most practical purposes.

More sidebands in f.m.

fore take a closer look at the pproximation implied in Fig. 16 we ca say that the amplitude of the generated winging phasor is too long when θ is maximum or too short when θ is zero. If
we could correct the amplitude by a we could correct the amplitude by hould be closer to achieving our per fect fixed amplitude swinging phasor We have to amplitude modulate the resultant by a small amount δx at twice
the modulating frequency, the phasor swinging frequency. This can be done by another pair of sidebands of twice the modulating frequency. These ar small in amplitude and phase related to the unmodulated reference phasor as in
the a.m. of Figs. 7 and 8 (we have turned our diagram through 90° in going from Figs. 7 and 8 to Fig. 17 and reduced the sideband amplitude but have not other wise changed the situation). Ou

Fig. 16. Comparing the resultant in Fig. 9 (September issue) with the ideal
frequency spectrum of true f.m., the equivalent of the a.m. in Fig. 1 (a)
begins to appear as Fig. 18. We see tha the swinging phasor is generated by five sine waves, the carrier, the upper and lower sideband pair separated from it by
the modulating frequency, and a smallhe modulating frequency, and a small separated from the carrier by twice the modulating frequency.
The phasor treatment of f.m. sideands can be extended to cover large in this way. To simplify the drawing his is the moment, before continuing, o emphasize two points. First, from the essential symmetry of the swinging phairs, differing from the carrier requency by $f, 2 f$ and, as we shall show, higher harmonics of $f, 3 f, 4 f$ and so on. Secondly, whatever the amplitude of he pair, hhe resulan combination is a hown in row 2 of Fig. 7, a resultan is fixed but whose amplitude is varying sinusoidally from $+2 a$ to $-2 a$ at requency $f, 2 f$ etc where a is th mplitude of the particular sideband Let us elaborate on the phasor addi-
ion of Fig. 17 by considering the detail of the five component phasors over quarter of a modulation cycle, all that heeded, by virtue of the symmetry, to a quarter cycle of modulation time the resultant of the first pair of sidebands $\left(F_{o}-f\right)$ and $\left(F_{o}+f\right)$. The time intervals re for $0^{\circ}, 30^{\circ}, 60^{\circ}$ and 90°, as shown in Fig. 19 (a).
In terms of the modulation frequency f the time intervals of Fig. 19 (a)
respectively, for time zero (0°) to
$\frac{1}{12 f} \quad \frac{1}{6 f} \quad \frac{1}{4 f}$ $\left(30^{\circ}\right)\left(60^{\circ}\right)\left(90^{\circ}\right)$
Fig. 19 (b) shows the second pair of sidebands ($\pm 2 f$) for the same time in19 (c) and 19 (d) show the resultants for the $3 f$ and $4 f$ sideband pairs (so far not used in the text, but yet to come).
To find the resultant of any number of
sideband pairs it is only necessary to project one sideband on to the reference phasor direction (i.e. the mid frequency of the sideband pair). This simplifies the construction and makes plots against easier to draw. So going back to our quarter cycle and dividing it up into six 15° intervals, $1 / 6,2 / 6 \ldots$ and further considering for convenience $0,2,3,4,6$ sixths, we shall be considering, in fact, 0 ,
$30^{\circ} 45^{\circ} 60^{\circ}$ and 90° of the quarter cycle The phasors may be labelled $0,2,3,4$ and 6 . Take the first sideband and draw the upper sideband in the first colum for $f, 2 f, 3 f, 4 f$. The angles involved in the plot are $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90° or the sine of the angles easy. (sine $0=0$ sine $30^{\circ}=0.5$, sine $45^{\circ}=0.707$, sine $60^{\circ}=0.866$, sine $90^{\circ}=1$.)
I shall now proceed with a phasor

Fig. 17. Correction required to the length of the generated swinging
phasor to make it equivalent to the perfect fixed-amplitude swinging phasor (thick lines).

Fig. 18. Frequency spactrum of true frequency modulation, showing upper and lower sideband pairs.
demonstration of f.m. sidebands by adding successive sideband pairs (o various amplitudes and in phase or carrier (of various amplitudes) and so generating swinging phasors of various. values of modulation index ($\Delta f / f=0$) he amplitudes could be guessed in ver only involves sidebands $\pm f$ and $\pm 2 f$ However, the mathematicians hav worked out the relative amplitudes of the sidebands for various modulatio ndices. These have been tabiosed Func og tables) and are tion Appendix 3)
For a modulation index of unity $\Delta F / f=\theta=1$ radian, our phasor wil swing, pendulum like, with a period $1 / f$ hrough one radian each side of the nity, the carrier amplitude require (Bessel Function) is 0.76 , first sideban $\pm f) 0.44$ and second sideband ($\pm 2 f$) 0.1 Plotting the combination as in Fig. 19 or our various times and remembering 0.88 and 0.22 (doubling the amplitud for the sideband pair resultants), we ge Fig. 20. The successive positions super'pure' sine a clear idea of how the five

Fig. 19. Resultant of pairs of sidebands Fig. 19. Resul cycle of modulation time at 30° intervals: (a) first pair ($\pm f$); (b) second pair ($\pm 2 f$; ((c) third pair ($\pm 3 f$)
and (d) fourth pair $(\pm 4 f)$ and (d) fourth pair ($\pm 4 f$)
generate the swinging phasor
If we swing our phasor through a bigger angle we find that yet mor sidebands ($\pm 3 f, \pm 4 \mathrm{etc}$.) are required
to produce the simple harmonic (pendulum type) motion of sensibly constant amplitude. For larger swings the carrier itself is dramatically altered in mplitude. As a final illustration (137°) swing. For this the amplitudes of the sidebands pairs (obtained by doubling the appropriate readings from the $2 f 0.86,3 f 0.40$ and $4 f 0.13$. The amplitude $2 f 0.86,3 f 0.40$ and $4 f 0$
A somewhat crude justification (which does not work out exactly) is to say that, as the swinging phasor spend bout as much time more than ± 90 out of phase with the carrier componen reduces to zero. This can be visualised y what follows.
Repeating the process of Fig. 20 but his time for four sideband pairs, w alent shown in Fig

It will be noted that each successive sideband pair is added at right angles to its predecessor, (see $t=0$ on Fig 2
ndition isto october 1979 conventional texts although it is implicit in the 'pure' maths), and finally have a zero or negative vand pair can phase), as well as positive. The zer value of sb_{2} pair at $t=3 \mathrm{in} \mathrm{Fig}$.20 (and the corresponding phasor position in Ftg. 19) is one example of a zero side band pair. $t=4 \mathrm{in}$ Fig. 21 zegustrate sideband pairs.
The practical implication of all this to f.m. engineering should be discussed First, the greater the angle of swing the more sidebands there are and so the
greater the bandwidth relative to the modulating frequency. At high modulating frequencies the swing is small, because the swinging phasor is rapidly brought to rest, having swung through the equilibrium position $\pm \Delta f$
with respect to the carrier. Conversely at low modulating frequencies the swing is large because (for the same amplitude of modulating signal and so ΔF) the swinging phasor, having swung through the equilibrium position at $\pm \Delta F$
with respect to the carrier, only slowly comes to rest, so sweeping out a proportionately greater angle. The lower modulating frequency therefore involves more
higher.
If we use the data for Fig. 21 and then Fig. 20 to construct spectra (equivalent to Fig. 18) for a modulating frequency f assuming an index frequency Fig. 22 and, since the index for $2 f$ Fig. $\Delta F / f=\theta$) is 1.2 , we can use the data of Fig. 20 approximately for Fig. 22(b) This illustrates the general f.m. requirement of more or less the same bandmodulating frequencies a In broadcast practice
In broadcast practice a modulation

Fig. 20. Swinging phasor for a modulation index θ of 1 radian. The successive positions at times 0,1,2 and show the swinging process more clearly.
index of 5 is used for the highest modulating frequency, 15 kHz , giving a phasor swing of ± 5 radians. The effecgenerate this (from Bideband pairs to generate this (from Bessel tables) is 7 , $7 \times 15 \mathrm{kHz}$ on either side of the carrier frequency or some 200 kHz in all. The actual frequency deviation is $\Delta F=f \theta$, $15 \times 5 \pm 75 \mathrm{kHz}$. It is important to see that the bandwidth for low distortion
f.m. is greater than the deviation and, from what has gone before, varying phase shift at different frequencies, say in the receiver i.f. passband, would distort the all important swinging vector in
amplitude and angular position. The amplitude and angular position. The over the deviation $\pm 75 \mathrm{kHz}$, although this requirement is usually increased to compensate for a tendency in conventional disciminators to lose linearity at however, the p.l.l. disciminators available in i.c. form.

Fig. 21. A swinging phasor, over a time carrier and relevant sidebands $\pm f, \pm 2 f$, $\pm 3 f$ and $\pm 4 \mathrm{f}$ from F_{0}

Fig. 22. The data from Fig. 21 and then Fig. 20 used to construct spectra for modulating frequencies of (a) f^{\prime} and (b)
 $2 f$!

At lower modulating frequencies, say 3 kHz , and the same amplitude $\pm 75 \mathrm{kHz}$ the index is increased 5 times to 25 radians. This, from the Bessel tables, pairs involving sidificant sideband $3 \times 30 \mathrm{kHz}$. Again we see the bandwidth remaining around $200 \mathrm{kHz}(3 \times 30 \times 2)$. At lower frequencies still the swinging phasor rotates through many revolutions and when passing through
the equilibrium position it is moving at an approximately uniform number of revolutions per second. Watch a torsional pendulum in a glass-cased clock for model. Imagine the swinging phasor as a white line painted as a radius on the frequency greater or less than the carrier, according to whether it is advancing or retarding. This frequency is, from earlier theory, $\Delta F=f \theta$. Thus if θ is,
say 50 , we find that sidebands around ± 50 predominate in the spectrum Above this the sidebands fall off rapidly to negligible values while the band between is filled with generally a multitude of lower ampitude sidebands. The exalso be explained in these terms, as well as effective use of the bandwidth irrespective of the frequency content of the modulating signal.
First consider large noise spikes in the pass band of the receiver. These are
clipped by the limiter to the same level as the signal amplitude. Owing to their normally short duration (e.g. ignition interference) they have little effect on the disciminator output, unlike a.m.
White noise, considered as spurious sidebands of small amplitude in comparison with the signal, will shift the phase in a small random fashion. Those near the carrier frequency will be less low f, intentional, modulating signal and so giving output less than the lowe modulating frequencies. Therefore, unlike a.m., the demodulated noise will end to zero in the centre of the pass will be apparent and then only if the noise is of comparable amplitude to the swinging phasor.
Further, since the frequency devia tion is, perhaps, five times those highe requencies towards the edge of the five times more effective in amplitud than noise. The noise in sidebands out
*Since we have frequently considered large angles of phasor swing (many revolutions), (typical swing $\pm 10^{\circ}$ or less) would be the torsional pendulum. This is a massive wheel on a vertical axis, rotating back and forth
through large angles due to the torsion in the through large angles due to the torsion in the
supporting wire. When used in clocks the supporting wire. When used in clocks the
ong period of the escapement allows the
clock to run for a year on one winding Since clock to run for a year on one winding. Since
hese clocks are always in glass cases, an maginary (or white painted) radius ons, an heel would give an accurate model of our
ide the audio pass band will not pro dike audible output in the receiver.
Likewise adjacent channel inter ference will be of very much less consequence than with a.m. The closer the requency to the interfering carrier th less the output. (The lower frequency
shifts the F less as above.) Further, the amplitude of the one determines its ability to shift the phase and give output from the other. Unless the intefering signal is of similar amplitude it will criminator. It is for this reason that, in common or close channel working, there is a very small area between two stations where strengths are sufficiently comparable for interference to station captures the receiver and only its signal gives output from the disciminator.
Measuring $\Delta \mathbf{F}$ - a test procedure If it is required to set the audio gain of ulating section of an f.m. transest procedure is available which depends on the absence of the carrier under certain conditions. First an a.m. receiver with a very narrow pass band to receive the f.m. (unmodulated) carrier. The transmitter is then modulated with a frequency giving sidebands outside the receiver pass band so that the register on the S-meter. The amplitude of modulation and corresponding ΔF is then increased. The meter will indicate zero as the modulation index reaches 2.4 because the carrier is of zero. These complete extra half revolutions on top of the 2.4 radians, that is $2.4+\pi, 2.4+2 \pi$ etc. Thus increasing the modulation amplitude and noting the setting for successive zer, , 7 index points.

Appendix 1: Mathematical expres-

sion of pm

P.m. of carrier can be expressed as
where ω is the modulating signal and Ω is the carrier expressed in radians/s. In terms of modulating frequency f and carrier frequency F_{0} this would be
The term in the bracket is modulating the carrier phase

Appendix 2: Mathematical expres

The frequency modulation of carrier can be expressed as $(\Delta F$ sine ωt) sine Ωt
where ω is the modulatitng signal and Ω is the
carrier expressed in radians/s. In terms of the carrier expressed in radians $/ \mathrm{s}$. In terms of the modulating frequency ${ }^{\text {and }}$ carrier
frequency F_{0} this would read (ΔF sine $2 \pi f t$) frequency
sine $2 \pi F_{0} t$.
equency ω the phase angle at a time t is
The rate of swing is, using calculus,

$\frac{d}{d}\left(\theta_{t}\right)=\theta_{\omega} \cos \omega t$

Hence the maximum rate of swing, $\Delta \Omega$, is θ radians $/ \mathrm{s}$ (when cosut $=1$). Putting this in $\Delta \Omega=2 \pi \Delta F$ and $\omega=2 \pi f$, we have
$2 \pi \Delta F=\theta 2 \Delta f$
and hence $\Delta F=$

where $\Delta F / f$ is known as the modulation where A for is known as the modulation
index, a very important term in the theoreti cal treatment of f.m.

Appendix 3: Bessel Functions

The amplitude of successive sidebands is gent series viz.
$A^{3}=\frac{2.4^{3}}{8.6}\left\{1-\frac{2.4^{2}}{2.8}+\frac{2.4^{4}}{2.4 .8 .10}-\frac{2.4^{6}}{2.4 .6 .8 \cdot 10.12}\right.$ $=0.29\{1-0.36+0.052-0.004$ $=0.2$
$A_{0}=\frac{2.4}{1}\left\{1-\frac{2.4^{2}}{2.2}+\frac{2.4^{4}}{2.4 .2 .2}-\frac{2.4^{6}}{2.4 .6 .6 .4 .6}\right.$ $=2.4\{1-1.44+0.52-0.08$ $=2.4 \times 0=0$
$A_{4}=\frac{2.4^{4}}{16.24}\left\{1-\frac{2.4^{2}}{2.10}+\frac{2.4^{4}}{2.410 .12}-\frac{2.4^{6}}{2.4 .6 .10 .12 .14}\right.$ $=0.086\{1-0.29+0.035-0.0024$

Bessel Function table for $\theta=2.4$
$A_{n}=\frac{\theta^{n}}{2^{n}\left(n^{1}\right)}\left\{1-\frac{\theta^{2}}{2(2 n+2)}+\frac{\theta^{4}}{2.4(2 n+2)(2 n+4)}\right.$
$-\frac{\theta^{6}}{2.4 .6(2 n+2)(2 n+4)(2 n+6)}$
where $n=$ the number of the sideband ($n=0$
is the carrier). Thus for $\theta=2.4$
$A_{1}=\frac{2.4}{2}\left\{1-\frac{2.4^{2}}{2.4}+\frac{2.4^{4}}{2.4 .4 .6}-\frac{2.4^{6}}{2.4 .6 .4 .6 .8}\right.$
$=1.2\left\{\begin{array}{l}1-0.72+0.172-0.021\end{array}\right.$
$=0.52$
$\mathrm{A}_{2}=\frac{2.4^{2}}{4.2}\left\{1-\frac{2.4^{2}}{2.6}+\frac{2.4^{4}}{2.4 .6 .8}-\frac{2.4^{6}}{2.4 .6 .4 .8 .10}\right.$

1st sideband pair each 0.52 sum 1.04 1st sideband pair each 0.52 sum 1.04
2nd sideband pair each 0.39 sum 0.78 2nd sideband pair each 0.20 sum 0.40
3rd sideband pair each 0.064 sum 0.13 4 th sideband pair each 0.064 sum 0.13
It would be out of place here to justify the series by rigorous maths. However, this example confirms the figures used for the
construction used in Fig. 21. One can have construction used in Fig. 21. One can have
therefore the same confidence in the Bessel therefore the same confidence in the Bessel
tables as one has in logs - they always work, though one is not likely to construct one's own tables in either case. Indeed the write
would never have justified these values, evaluated above, without a pocket calcula-
tor to do the arithmetic.

Current mirrors (Continued from page 58

Mirror-aided output drive stage

Consider the circuit of Fig. 9. Ignore the additional complication T_{2} and Tr_{3} common emitter with Tr_{1} followed by an output common collector buffer Tr_{4} feeding the load. Common collector circuits are notoriously poor at feeding capacitive loads - every load whe case
some shunt capacitance and in the

Fig. 9. Output drive circuit with current
fan npn transistor for $\mathrm{d} V_{\mathrm{o}} / \mathrm{d} t>0$ this capacitance is charged rapidly as the urrent through Tr_{4} increases while it is down swing ($\mathrm{d} V / \mathrm{dtt}<0$) a common collector element with a resistor between emitter and negative supply (R) is unable to sink current; the only discharg ath for the capacitive load bein The circuit shown in Fig. 9 has the advantage that not only has a curren sink replaced R_{e} but the current sink is now driven. On the upswing (d V_{o} as this aids charging the load the voltage following by Tr_{4} is good. On the down swing ($\mathrm{d} V / \mathrm{d} t<0$) $I_{\mathrm{c} 1}$ increases as does $I_{c 2}$. The result is an active current pull down by Tr_{3}. The circuit can be summarised as a voltage pull-up, curcan be found in a number of op-amp designs. It should be noted that the output impedance of large signals will be very non-linear as in the limit on puil-up the output "sees" the very low
output impedance of the active common collector stage of Tr_{4}. On pull down the output "sees" only the collec tor sink of Tr_{3} with Tr_{4} tending to turn

HAS OUR BABY GROWN INTOA MONSTER?

The cassette was our baby. At the time, it was a startling and exciting innovation.

But times change.
In fact, there are now over 50 makes of cassette and over 1,000 decks.

And enough wow and flutter figures to send Pythagoras round the bend.

Consequently, finding the right cassette for a deck isn't quite as simple as it used to be.

That's why we tested our present range of five cassettes on almost every popular cassette deck around.

A few results may surprise you.
We found, for instance, that a few of the most expensive decks didn't necessarily work best with our most expensive tape.

And that a handful of the middle priced decks did.

We also found that it's foolish "I
to generalise about certain types of tape being right for all Japanese decks or all European decks.

Our findings are available on a pocket chart that lists almost every popular deck with the cassette that matches it most perfectly.

You'll find one at your local dealer.
Either look at it or, every time you buy a cassette, wrestle with a problem of monstrous proportions.

Simply years ahead. + r

rollaries. The genuine contradictions ha be concealed, somehow, and were, there one masqueraded as paradoxes - apparen verybody admits but few have claimed to have resolved. Further, several patently were, amazingly, believed to be true. But in were, amazingly, believed to be true. But in
order to believe impossible things, one has to order to believe impossible things, one has to
ive, along with Lewis Carroll's celebrated Alice in Wonderland ... Likewise, the philo sophical proposition of equiventent
tions" (e.g. wave/particle), notwithstanding the crazy incompatibility of the various descriptions and a convenient way of de
uding themselves; it serves no useful purpose, apart from deceiving and mystifyin he lay public
Jennison's doubtful derivation of $F=m a$ nd $E=m c^{2}$ from his peculiar hypotheses is either compelling nor impressive. The fact
hat the careless use of mathematics and funny thought-experiments in and owers cannot prove anything, apparently escapes him. Nevertheless, in Jennison's sense, and with his poor, unscientific methods, one can "prove" anything, o
course. It is not surprising that eve meaningless theories (e.g. relativity) and mpossible corollaries are regularly "proved this way.
Jennison nagnetic moment, etc, of electrons as if th were real, measurable things. Contrary to popular belief, this is, of course,wrong and il superficial "explanations" of these concepts usually prove unproductive, if not misleadin and wasteful. It is not, in any case, the
business of science to make such presumptuous attempts, and those who do, and there are so many,
travesty of science.
The errors surrounding the concept of inertia are typical and they demonstrate the utter confusion prevalent in theoretical
physics. If Jennison cared at all to study physics. If Jennisol (ared at anthird-hand
Emist Mach himself (second- or the accounts are no good for they are almost
always hopelessly misleading) he might have always hopelessly misleading he might have
realised that Mach's concern was not "explaining" inertia but the search for a satisfactory answer to the pressing question: "with respect to what should one describe
the position and the motion of a body?" Mach suggested "the entire universe" and, as is well authenticated but little publicised, he
dismissed instantly Einstein's answers: the dismissed instantly Einstein's answers: the
principles of relativity, equivalence and principles of relativity, equivalence and
similar rubbish. ${ }^{\text {. }}$ So do all genuine physicists, of course (for instance, L. Essen, October
1978 and April 1979 issues). What is astonsh ing, however, and, for that matter, particuing, however, disturbing is the foolish insistence of larly disturbing is the nillowers that they have
Einstein and his forlo
implemet implemented Mach's teachings and vindi-
cated his ideas.. With regard to inertia Mach wrote:
As soon therefore as we, our attention being
drawn to the fact by experience have per-
ceived in todies the existence of a special drawn to the fact by experience, have per
ceived in bodes the existence of a special
property linetria] determinative of accelera property linertia] determinative of accelera
tions, our task with regard to it tends with th recognition and unequivocal designation of
thisf fact. Beyond the recognition of this fact this fact. Beyond the recognition of the
we hanl not get, and every venture bey
will only pe productive of

Einstein and his disciples did not heed Mach's words, so the obscurity and onfusion which resulted is simply and truly
bysmal, and may be evidenced in Jennison's abysma,
article.

Hishightime hatarevoluton should take
place in physics.
Theo Theocharis
Department of Mathematic
Departinentlege
Imperial Colege
London, SW7

eferences

E. Mach, The Science of Mechanics, Open Court, Sixth American Edition, 1960; p. 286. Methuen, London, 1926 ; pp vii-viii. 3. Ref. 1; pp 270-271.

The author replie
Dr Theocharis's sermon is pure fire and r Theocharis's sermon is pure fire an his dogmas lest I be smitten with inexplicable nnihilation. I am only flattered that I am Einstein!
I have, of course, studied the relevant parts f Mach's original works and I quote a line reflect that we cannot abolish the isolate odies ... it will be found expedient pro isionally to regard all motion as determine y these bodies". As I have stated elsewhere almost every physical problem but inability oaboish dees hot necessarily identify the est particle which Mach assumed to be point. Having shown that kinematic motio equires a system of reference, Mach calls pos tant) bodies, for an explanation of th
distaner dynamics. His only argument in support of
this is that there must be a reason for the dynamical behaviour but, on loaking around the test particle for cause, all that can be observed are the other isolated bodies measured. The fallacy lies in the assumption that the test particle is a point; he therefore looked around and not inside the test par he principle of the phase-locked cavity recognises the finite dimensions and relativ istic rigidity of the smallest particles of reference frame but accounts entirely for the ynamics within the test particle itself whe is accelerated relative to that frame Mach's clearly stated assumption of poinsed him to be quite dogmatic in developing the theme that there could be no ther explanation for the dynamics than that provided by the relative motion of the
reference system of the distant isolated bodies. Although he initially stated that he would use it as "expedient provisionally", he In terms of classical dynamics it is clear that Mach's argument is an extension of Boscovich's hypothesis of separate rigid
bodies rather than d'Alembert's principle of systems analysis. My own analysis fully indicates d'Alembert at the expense of Boscovich.
Perhaps D Perhaps Dr Theocharis can tell us how to
construct a rigid body and with what he proposes to replace Einstein's special theory? I am accused of being "duped by Planck, willingly kneel, but I regret that I cannot wilingly kneel, but I regret that I cannot Theocharis.
R. C. Jennison
Further letters on this subject will be published
loter

C-D IGNITION FOR

MOTORCYCLES

Having read with interest J. H. J. Dawson's letter in the August issue on the subject of
modifying the R. M. Marston capacitor discharge ignition unit for motorcycles I think you may be interested in my own practical
observations. I have done a similar modificaobservations. have done a simizar modifica
tion to a commercial (Sparkrite) unit and
originally found the same sort of false tric originally found the same sort of false trig
gering to which Mr Dawson refers. It is gering to which Mr Dawson refers. It is
perhaps hardly surprising that this crosstalk perhaps hardly surprising that this crosstaki
occurs, bearing in mind the enormous diference between the input trigger voltage of the unit and the voltage appearing across the
secondary of the ignition coils - some 70 dB In my case, the effect could be eliminated entirely by keeping the contact-breake connections apart, preferably screened, and
by keeping them well away from the h.t. leads.
Mr Dawson makes the point that these precautions, including his sould culy be
nhibit false triggering, should only ecessary on $90^{\circ} \mathrm{V}$ twin motorcycles or three ylinder machines. In fact I can assure him arallel twins or four-cylinder engines. Whilst the effect on his $90^{\circ} \mathrm{V}$ twin is perhaps ne of the worst cases, a redundant spark is
extremely detrimental to the performance of 180° parallel twin or four-cylinder engin in these cases an unwanted spark can occur the end of an intake stroke when the inle not under compression, but the effects seen in practice suggest that some combustion occurs. If the c-d units are experimentally
inked together (i.e. 100% crosstalk), the linked together (i.e. 100% crosstaik),
engine still runs, but at reduced power. As most two- and four-cylinder motorcycles
employ the 180° system, there is indeed no employ the 180° system, there is indeed no
need for most motorcyclists to employ a need for most motorcyclists to employ a
circuit as sophisticated as Mr Dawson's merely to guard against the one-in-a-million
chance of a false spark - it would pass chance of a false spark - it would pass unnoticed. There is, however, every
Finally, rather than tackle the problem
electronically, it might be an even better approach to use an optical system and to convey the pulses from the camshaft to the $c-\mathrm{d}$ unit by means of twin optical fibres. In
this way there would be no sensitive circuits around to pick up the stray pulses. around to pick
John S. Wison
Amersham
Amersho
Bucks

DISPLACEMENT

CURRENT IN A VACUUM
Whilst hiilst one may agree with the excellen
logical argument via Maxwell's equations, in Professor D. A. Bell's interesting article "No adio without displacement current" in you August issue, I still find myself needing a
further empirical justification of the dislacement current, i.e. what is displaced in a acuum?
Now a Dr James Dodd has recently written, in New Scientist, 1st March, 1979, in an heory", that "On "Colouring in the quark live up to its name. In relativistic quantum pairs ..." If Dr Dodd is right could it not be
per pairs..." If Dr Dodd is right, could it not be
that this could constitute an ether capable of
displacement? Moreover, on this assumption,
would it not be possible to devise a simple theory to derive an expression for the obtained in textbooks (e.g. Telecommunica tions, by A. T. Starr) via Ampere's Law, as 377 ested in your comments. Moreover, I still cannot understand how a vacuum can offer an impedance to an electhere to do so! Perhaps someone could explain this to me.
Peter G. M. Dawe Peter G.
Botley
Oxford

The author replies:
The question of intrinsic impedance of free
space is fairly easily dealt with impedance' is here merely a figure of speech, introduced because there is a close analogy form transmission line It merely means that in a radiated wave the ratio of electric fieldstrength to magnetic field-strength has a
constant value which is a function only of the medium through which the wave is propagated. If the medium is free space, $E / H=377$ and smce E and H are measured in volts/ heste and amps/me dimension of ohms.
I am afraid" "a sea of virtual electron-
positron pairs" does not seem to positron pairs" "does not seem to me any more
tangible than free space' especially word virtual is included. There are other aspects of physics which to me seem equally
'unreal': from Newton to Einstein it unreal': from Newton to Einstein it was accepted that gravitation was action-at-a-
distance, and although 'curved space' can be described by good mathematics, I cannot see hat it fits with any everyday experience. One
can only say that much of our knowledge of the universe today can be expressed coherently in a mathematical formalism
which does not correspond with everyday Which does not correspond with everyday sizeable objects, i.e. with mechanical models. D. A. Bell

VHF RADIO AND
THE OPEN
UNIVERSITY
As with the BBC's fulsome, irrelevant, con-
tradictory and evasive reply when I made the same complaints as you correspondents Dr Crook and Mr Blanchard (July letters), the credy is just not good Long before there was any talk of Open
University broad Uninerrity broadcasts the Corporation
repeatedly told us that within a few years all heir broadcasting would be on v.h.f. only and advised us to equip ourselves accor dingly. And, indeed, all their music prosonally, with the age of retirement approaching and the possibility that the cos of changing over might then be beyond ood an a.m. receiver as money could buy or build and invested in v.h.f.
As one of your correspondents says, many a.m. only, and for what reason the Open University requires v.h.f. and stereo good-
ness only knows. Very, very few of these transistor set and, with most students
already having them, they would well attract As one of your correspondents suggests,
one has to reach the conclusion that it is all a matter of empire building, that the BBC has too many whiz-kids being clever without
knowing what they are doing and too arroknowing what they are doing and too arro-
gant, despite their smooth talk, to have
egard to their previous commitments to regard to their previous commitments to listeners and makers.
T. F. Macka
Broadway
B

Worcs
nh his reply to Dr Crook and Mr Blanchard July letters) Mr sturge of the BBC En
gineering Information Department says "unfortunately the v.h.f. channel has to be used for educational programmes"
It does not have to be used for anything of the kind. That the BBC has agreed, possibly under pressure, to this abuse does not alter
the fact that it is a continuing betrayal those who took the BBC's advice and changed to v.h.f.
D. J. Watson
D.J. Watson
Haypield
Derbyshire

3D TELEVISION
I have felt for some time that it is impossible o provide stereoscopic viewing of a movin nage on a flat screen which can be viewe for more than a short period without eye
discomfort, for reasons connected with the mechanism which the brain uses to perceive
distance The brain uses two systems to estimate the distance of a viewed object, the first and probably the most important being the tereoscopic separation simulated by the
various systems in use some years ago in the cinema. However, it is also necessary for the eye to focus to the correct distance to render ocusing mechanism must be controlled by the brain.
n attempting to view an artificia stereoscopic image there must be conflic
between the two systems, since stereoscop is telling the brain that the moving object is say, coming towards one, whilst feedback object is moving only at a fixed distance on flat screen. The result of this conflict must be discomfort, eyestrain and headaches, and this seems
to be an insuperable barrier to 3D viewing to be an insuperabe barrier to 3D viewing
until it is possible to construct a genuin rree-dimensional scene in the middle of th living room.
Wakefield
West Yorkshire

HIJACKING CARFAX?
Peter Manson (August letters) raised the question of possible 'hijacking' of a Carfa Carfax are considering this problem The answer is that they certainly are, although you would not expect us to say anythin prevent such intrusions.
D. P. Leggatt,
Head of Engin

Head of Engineering Information Dep
BBC
London W1

WHAT'S WRONG

WITH TELETEXT?
was interested to see the editorial in the ugust issue bemoaning the non-popularity
f teletext; especially as I have just about finished the construction of a stand-alone off what it receeves. have somewhat 'gon The writer suggests "A hundred or so
letters-to-the-editor broadcast every day. letters-to-the-editor broadcast every day.
The trubule is your have to wait up to 30
30 particular page to be transmitted (on ITV the cycle time is over a minute) and, with only
four lines of text transmitted per television frame, there is no room for much expansion unless a whole tv channel is devoted to teletext alone. Even if more lines could be
transmitted, it takes about half a minute to read a page, so that to read these suggested hundreds of pages would take all night! I agree that the content could be improved
but there
more pages.
I read that the set making industry would
like to get the price of the teletext facility like to get the price of the teletext facility
down to about $£ 65$. I heartily agree with this figure - the present service is certainly
worth no more. Small criticisms I have at the worth no more. S
Frequent spelling and punctuation error 1. Frequent spelling and punctuation error
(no, not decoder faults!)
2. Pages mentioned in indexes, but no
actually transmitted.
Pages that are transmitted but not indexed
I only recently discoved several Oracle discovered the existence o range of numbers to find what's there, and if a page is not being transmitted the only way you know it's not being transmitted is b aniting for more than a minute for its nonappearance!)
4. Stocks and shares. These are of no use to the ordinary viewer, and are too generalised much better sources of information already, 5. The information should be more localised On Oracle especially, one has to wait for all getting to one's own.
Finally, a word of thanks toWirelessWorld
for publishing constructional details for publishing constructional details of the t ncoder; and to advertisers who sell 200 untested" i.cs for $£ 1$, enabling me to onstruct my telet David Williams David William
London SE12

Why is it that British electronics invariably Why is it that British electronics invariably in the street how he saw teletext he would
have replied "a black box with coax input/ O.K. it's not an ideal solution and is technically far more complicated than is really necessary, but at least it would retain
the framework of teletext and prevent it from becoming extin The only glimmer of hope is that our Asian time to save its "s a proge" David Jack

```
l
Over Hul
Bolton
```


Schmitt-type astable circuits

by Peter Williams Ph.D, Paisley College of Technology

Schmitt-type astable circuits

leading. It is irrelevant because the point he is making could have been made by referen
to the equation for a charging capacitor, $i=C \frac{d V}{d t}$
In this equation one could say that the right hand side 'is' the displacement current,
which it is in Maxwell's theory by definition, which it is in Maxwell's theory by definition,
but not in ours. It is misleading to introduce the Kelvin model since, as was shown by Oliver Heaviside, the Kelvin model is incom-
plete since it does not take account of effects plete since it does not ane account of effects
due to the distributed inductance of the line. 2. What we have been proposing is that Maxwell's theory is inside out,' since it
employs \mathbf{E} and \mathbf{H} and, in circuit theory leads employs E and Hand, in circuit theory,
to the concepts C and L. In our theory the travelling E, H signal is the primitive and the transmission line the basic circuit element. Insofar as this change of viewpoint cads to
Maxwell's equations then we would consider Mhem to be correct. In this sense therefore Professor George's statement "It looks as if
Maxwell's equations may be right after all" is correct at that level.
To show how Maxwell's equations relate To show how Maxwell's equations relate to our view would require more space
proper for a note of this sort but we hope that our further article in the March issue will have helped with this point Walton

I. Catt, M. F. Davidson, D. S. Walto

STEREO

TOGETHERNESS?
The death of Mr Airey Neave reminds me that some years ago he was on SubCommittee D of the Select Comsittee on
Science and Technology, if memory serves. I Science and Technology, if memory serves. I
had not then learnt properly about the Government attitude to science and techno logy so well defined in Miss A. M. Clerke's
article on Charles Babbage in the Dictionary ar National Biography, which so ably shows HMG setting statistics and computer science simultaneously back $50-100$ years for lack of a few thousand pounds, while withholding an
answer to a letter for eight years, in the 1830s. In my ignorance I suggested to Mr Neave a primitive idea from the plane on which receivers should bear a stereo decoder and switch to enable the user to listen to mono o be that on right chanmelocily. The result would similarly equipped radio, albeit of a different similarly equipped radio, albeit of a different
size and make, the two could combine to listen in stereo. The idea is a little cumber-
some, but so is the idea of setting up a rig like some, but so is the idea of setting up a rig like
the Sanyo G 2600 'casseiver' when you take coffee at an open-air cafe, this being one with
speakers in detachable half-lids. I do not speakers in detachable half-1ids. I do not
decry the large, portable 'casseiver' as one decry the large, portable 'casseiver' as one
composer of my acquaintance is well content to use one without spaced external microphones, but with the analogue circuitry
of my youth effortlessly absorbed into the of my youth effortlessly absorbed into the
black hole which the national press so insistently describes as the "silicone chip" (an amorphous semiconductor perhaps?) my
suggestion could be absorbed into radio suggestion could be absorbed into radio
production without a second thought, and suitable tv commerciais would suggest
themselves automatically. The late Mr Neave themselves automatically. The late Mr Neave
may well have expended considerable effort may well have expendec considerable effrort
in the idea at the time, but I now feel it is a
a good idea for 1979.
Bernard Jones
London W1

The first part of this article, in the
September issue, dealt with parallel inputs and outputs of a microcomputer,
introducing serial communication with remote devices. In this part the author goes on to examine the interface devices needed for the serial mode of operation and brings in the concept of direct memory access.
Parallel-to-serial and serial-to-paraliel conversion is accomplished by a devic called a u.a.r.t. - universal asynchro nous receiver/transmitter. The block is divided into two subsystems, the transmitter and the receiver. The trans mitter accepts eight parallel data bit together with five parallel control bits. After they have been latched in the paraliel register, the data bits are transand shifted out one by one to the serial output. The control bits select some of the options which were discussed ear-
lier in the section on serial devices. The lier in the section on serial devices. The mitter clock. The receiver subsystem is the comp-
俍 lement of the transmitter. Bits from the
serial line are shifted in to the receive serial line are shifted in the data word is
shift register. When the dither comply errors and framing errors (stop bits not encountered when expected) and the word is transferred in parallel to the holding register. "Data available" shows that a new word has been
received, and "read data word" reads it out of the device. If the latter has not been asserted by the time the next word is received, the previous word is los when the new one is transferred to the holding register. In
The u.a.r.t. as described makes a per fectly good serial/parallel converter fo microcomputer use. However, with its plethora of inputs and outputs, it is no particularly convenient for interfacing a.c.i.as (asynchronous communica tions interface adaptor), are manufactured specifically for microcomputer information is addressed as a single word, with a read from it returning the status information and a write setting the control bits. The "transmission done" signal is included as a status bit,

Fig. 10. Block diagram of universal asynchronous receiver/transmitter.

Fig. 12. A-to-d converter with direct memory access interface.

Similarly, the transmitter and receiver data are combined into the same reg-
ister as far as the bus is concerned All outputs will, of course, be tri-state so that they can be connected directly to the bus.
Direct memory access
So far, we have said very little about the for this is simply that connecting to the bus is easy: the tricky part of the interface is that which connects with the outside world, be it the world of light
(1.e.d. interfaces), analogue electronics (d / a and a / d interfaces), serial data transmission (a.c.i.as), smells, car engines, or whatever. In fact all the interfaces we have considered are converted to the bus in the same way as the simple of Fig. 11, the communication is between an input/output device and the processor, with the processor acting as bus master.
However, one of the reasons for using a bus in the first place is to allow
possibilities for direct communication possibilities for direct communication
between devices other than the processor, particularly between peripheral devices and the store. This is called d.m.a. (direct memory access) com-
munication, and to accomplish it the device interface must take over bus mastership, temporarily, from the processor.
Figure 12 shows an a/d converter
with a with a d.m.a. interface. At each clock
tick, the analogue voltage is converted to digital and passed to the interface The task of the interface is to transfe store (i.e. to an appropriate bus address). To do this, it contains an address register which holds the address where the next value is to be placed. The address register is incremented after cessive values are stored in successive store locations. If this goes on for ever, all of store (including any programs) would be over-written, and so there is a word count register in the interface
which counts words to go, and the contents of this are decremented after each store operation. When it becomes zero, the transfers stop. Thus the task of the interface is to transmit a block of data from the a/d converter into store
The initial value of the word count governs the length of the block, while the initial value of the address register determines which store locations are used.
Although the transfers proceed independently of the processor, it sets the word count. Thus these registers have bus address, so that they are accessible to the processor as normal store locations. To initiate a d.m.a. operation, the processor writes appropriate as the word count is set non-zero, the interface steps into action, and thereafter the operation proceeds autonomously, without course, be some way of signalling to the processor when the operation is finished. For example, it could find out for itself by reading the word count register, and waiting until it becomes zero. While the word count is non-zero, the
interface monitors the "conversion done" line from the a / d converter. When this is asserted, it transfers the a / d output into the data register and then proceeds to request bus mastership. As described in the article in
Reference 1 (Fig. 22), this involves quite a complicated protocol, using the bus request, bus busy, and bus grant lines. Once mastership is granted, the interface puts the contents of its address data bus, operates "read/write", and enters the handshaking sequence with the store by asserting "address valid". When handshaking is complete, it relinquishes the bus by releasing "bus decrements its local address register, decrements the word count register, and if this is still non-zero begins the whole operation again.

Computer subsystems can be divided into those that can initiate transfers on the bus and those that can't. The former will become bus master on occasion, while the latter will not and so can
ignore the whole problem of bus contention, including the bus request, bus busy, and bus grant lines. Simple

WIRELESS WORLD, OCTOBER 1979 latching, or debouncing circuits) or with software (refreshing, or imposing a
delay in the program after a change of state), and illustrate nicely the trade-off, typical of microcomputer systems, between soltware and hardware complexity.
A / d and d / a converters, and lights and switches, are parallel devices. Even
so, interfacing them to a parallel bus is so, interfacing them to a parallel bus is
usually done with the help of an interface chip which handles the control lines, latches and buffers the data, and accommodates interrupts.
The major difficulty with serial transmission is mastering the various combinations of options that are part of all serial interface standards. Interface chips exist to handle the basic serial/ bits (start, stop and parity).
Reference

1. Witten, I. H., Computer buses, Wireless Further reading
Further reading
Klingman, E. E. ((977) Microprocessor sys-
tems design. Prentice Hall. Leventhal, L. A. (1978) Introduction to microprocessors. software, hardware, pro-
gramming. (Chapter 8). Prentice Hall. gramming. (Chapter 8). Prentice Hall.
Millman, J. \& Halkias, C. C. (1972) Integrated electronics (Sections 17-19 and 17-20). McGraw Hill.
Osborne, A. (1977) An introduction to micro-
processors, Volume 1 and 2 . Berkeley. Adam processors,
Osborne and associates.
Peatman
Osborne and associates.
Peatman. J. B. . 1 1977) Microcomputer-based
design. McGraw Hill.

Radiometer monitors atmosphere

The earth's upper atmosphere between 30 and 130 kilometres altitude is now being
monitored by an advanced radiometer monitored by an advanced radiometer
operating in the infra-red region. Called SAMS (stratospheric and mesospheric sounder), it is the only European experimen
carried in the American Nimbus carried in the American Nimbus
atmospheric research satellite now circling the earth in a near-polar orbit. The experiment was originated by Professor J. T.
Houghton of the Department of Atmospheric Physics at Oxford University.
Infra-red radiation from the atmosphere between the wavelengsis
focused within the instrument on a number of detectors, each equipped with a different set of filters, to enable specific lines of the test
spectrum to detected separately. Sixteen spectrum to be detected separately. Sixteen
different wavelengths are examined. The different wavelengths are examined. The
devic is situated at the base of Nimbus 7 and
is oriented is oriented to look tangentially towards the horizon at the limb of the atmosphere an
not directly downwards. A two-axis scannin mirror changes the direction of view and
met enables SAMS to scan the atmosphere verti-
cally. Because Nimbus 7 has been placed in a cally. Because Nimbus 7 has been placed in a
near-polar orbit and completes approximately 14 orbits per day, the
radiometer records the variation in infra-red radiometer records the variation in infra-red
radiation throughout the atmosphere on a radiation tr
global basis.
From the data obtained the quantity, distribution and movement of the selected
gases, ranging from carbon dioxide and gases, ranging from carbon dioxide and
water vapour to rare constituents such as water vapour to rare constituents such as
oxides of nitrogen, can be assessed. Many of
the gases are the result of atmospheric pollution. The projected twelve-month
operational life of the radiometer will also operational life of the radiometer will also
enable seasonal variations in the distribution of these gases to be determined. The cost of SAMS - about EIM - was met
by the Science Research Council, while the by the science Research counci, while the
design and development of the instrument was a collaborative endeavour of the Department of Atmospheric Physics, oxford
University, the Science Research Council's University, the Science Research Council's
Rutherford Laboratory and British Aerospace Dynamics Group Stevenage space en-
gineering department. As prime industrial gineering department. As prime industrial
contractor to the project, British Aerospace was given particular responsibility for the design and manufacture of the thermal sub system, the electronics, and the setting-up
and the alignment of the instrument inand the alignment of the instrument in-
cluding the integration of all the systems and
testing of the complete radiometer.

The Audio Engineering Society is calling fo The Audio Engineering Society is calling fo
papers to be presented at their 65 th Conven tion to be held in the London Hilton from February 25 to 27 , 1980. Anyone wishing to present a technical paper on audio en-
gineering or related subjects at this event gineering or related J. jects at this event
should contact Dr J. M. Bowher, Audio Engineering Society, Physics Department
University of Surrey, Guildford, Surrey GU2 ${ }^{5 \times H}$. The deadline for the receipt of complet SXH. The deadline for the receipt of comple

$-\square-\square$ Ifnoiseisaproblem in your design these instruments are essential for diagnosis

6

- High sensitivity, low noise ($<1 \mu \mathrm{~V}$)
- Modified CCIR filter
- Conforms to Dolby recommendations

Wayne Kerr Radford The dynamic range

wW - 114 FOR FURTHER DETAILS

ELECTRONIC COMPONENTS
 AND VARIOUS TESTERS

- ELECTRICAL INDICATING METERS PANEL METERS
EARPHONE \& HEADPHONE JACKS
VOM MULTI TESTERS POTENTIOMETERS
HIGH PERFORMANCE! PROMPT DELIVERY! COMPETITIVE PRICES!

WHAT MORE DO YOU WANT?

Hung Chang, world's largest independent manufacturer \& exporter of Meters and Testers, has production capacity of more than $1,000,000$ Meters per month. You will be completely satisfied with our products that have been exported to more than 35 countries and made by our 1,200 workers with special care. Please contact us and you will know Hung Chang.
-hC) hung chang products co., ltt HEAD OFFICE \& FACTORY
ADDRESS

```
MAILLING ADD. Seoul, Korea C.P.O Bor 3125 Seoul, Korea
```


wW - 014 For further details

Sole uk agents
ARMON PRODUCTS LTD. COTTRELL HOUSE 53-63 WEMBLEY HILL ROAD WEMBLEY
MIDDX. HA9 8BH

Low distortion amplification

Audio system offers a t.h.d. content of 0.003%

by B. J. Codd

Although the amount of harmonic distortion generated by audio amplifiers has received a good deal of coverage in Wireless World, most approaches have relied upon a study of specific distortion rigins such as common-mode
non-linearity and the pros and cons of The author of this article puts forward a different approach based upon
conventional design techniques where amplifier stages are compatible ihroughout, in an attempt to keep
distortion to a minimum. While corners have been cut, notably in the preamplifie for magnetic cartridge, which has been optimised for low distortion rather than Iow noise, the figures for t.h.d (2nd and
3rd harmonics) are down to 0.003% ra harmonics) are sor tid (2 diand has been employed.

ONE WAY of holding harmonic distor ion at a minimum level is to make each mplifying stage as compatible with its partners as possible, and in this outline a ow-distortion voltage amplifier, of the orm show in Fig. 1, is used. Here, th input stage is a voltage-controlled curstages are current-driven voltage sources. Overall negative feedback in his type of circuit increases the output mpedance of the first stage and reduces the input and output imped hese two stages are already compatible and the application of negative feedack improves the performance of th combined amplifier.

Power bandwidth limitation For reasons of stability it is usual to onnect a capacitor between collecto and base of Tr_{3}. Its value is determine by the open loop unity gain point $\left(\omega_{\mu}\right)$
required to keep the amplifier stable when overall feedback is applied. This point can be calculated, to a first approximation, from
$\omega_{2}=$ mut. cond. of $1^{\text {st }}$ stage $\left(g_{m}\right)$
$\omega_{\mu}=\frac{\text { compensation capacitor (C) }}{\text { (}}$
The current required to charge C_{c} is derived from the first stage, the maxium being the tail current of the di-
the input, faster than the speed which C_{c} can be charged, then th amplifier reverts from a linear mode to a lew-rate limited mode.
Slew rate

$$
\begin{equation*}
=\frac{i_{\mathrm{q} 1}\left(\mathrm{Tr}_{1}\right)}{C_{\mathrm{c}} .} \tag{2}
\end{equation*}
$$

where $I_{q}=$ quiescent current
as $\quad \frac{\omega \mu \times I_{\text {al }}}{g}$

As w_{1} is fixed for a particular amplifier slew rate can only be improved by in creasing $I_{\text {, or decreasing the }}$ of the first stage. Power bandwidth is related to slew rate (for a sine wave) by

$$
\begin{equation*}
\omega \max =\frac{1}{V \mathrm{p}} \frac{\mathrm{~d} v_{\mathrm{o}}}{\mathrm{~d} t} \max \tag{4}
\end{equation*}
$$

Thus the maximum usable sine wave frequency is a function of both the peak

$f_{(\text {max })}=\frac{\text { slew rate }}{\text { peak output voltage } \times 2 \pi}$

$=\frac{\omega_{\text {max }}}{2 \pi}$

Distortion

It is convenient to discuss the distortion level by separating the amplifier into voltage amplifying stage and the the put stage. The op
amplifier, used of the differentia normally described ine first stage, is

Fig.1. Low distortion voltage amplifier
conductance (g_{m}) whose units are in a non-linear manner with input vol tage $\left(V_{\text {in }}\right), \mathrm{g}_{\mathrm{m}}$ reaching its highest leve when $V_{\text {in }}=0$. The linear region can be - extended, at the expense of g_{m}, by the use of emitter degeneration. The inter nal emitter impedance ($r_{\text {e }}$) should be
kept small compared with the fixed emitter resistor, which necessitates a "tail" current of the order of 2 mA if g_{m} is to be kept at a reasonable figure.
A serious form of distortion ass A serious form of distortion associ effect." This is also known as "base width modulation" and occurs due to changes in the width of the depletion layer of the collector/bas junction as the potential across it distortion components at the input which are not reduced by negative feedback. Series voltage feedback can be the source of another form of distor tion due to the common mode voltage capacitance and the quiescent curren I_{q} To minimise these effects $V_{\text {ce }}$ should be high, collector/modulation kept low and a current source used to provide I_{q} Once these design steps have been be reduced to a very low value by matching IC_{1} and IC_{2}.
The criteria for low distortion do not necessarily satisfy the requirements for the lowest possible noise; however, the
use of low noise devices for $\mathrm{Tr}_{1}-\mathrm{Tr}_{2}$ provides a reasonable noise figure over a wide range of source impedances. The second stage operates as a cur-

Fig.2. Main power amplifier circuit. This is an extended version of Fig. 1

Fig.3. The "low power" amplifier
accomplished by a common emitter connection which for reasons of rent source. The problem of "early effect" distortion can be overcome by using a cascode composite transistor,
apacitive effects from the input signal For low power from the input signal ementary emitter follower biased in class A is all that is required for the output stage. For higher power, the becially when the stage is operated
class B. The four major contributors to the distortion were found to be crossover distortion, variations in h_{s} o the power devices with current and frequency, high current wiring and changes in drive requirements a

WIRELESS WORLD, OCTOBER 197

Fig.4. Schematic of the preamplifier and tone control stages

Points 1 and 2 can be minimised by the use of a "triple" which has excellent linearity, whilst the thermal isolation of the output devices gives a stable
operating current. The quiescent cur rent is still important, and should be set such that the "crossover spikes" just disappear.
Whilst measuring the distortion of this stage it was apparent that the
layout of the high current wiring was extremely critical. In fact, any meaningful figures proved impossible to ascertain until certain modifications were carried out
Star-configuration wiring was
employed, high to a minimum length and screened cable used for high current wiring, including earth returns.
A class A complementary emitter follower was used to interface the reduce the influence of varying power levels and frequencies.

Circuit description

Figures 2 and 3 show a practical realisation of an amplifier based upon the design principles previously discussed. As both circuits are of similar design Tr - Tr form a conventional ferential amplifier, whose tail current, defined by Tr_{3}, is 2 mA . Emitter deeneration has been added to increase the slew rate and flatten the g_{m} curve. with Tr_{5} and Tr_{6} connected as a current mirror. This configuration also provides a push-pull current source to drive the next stage. The hoos potentiometer Tr_{6} is adjusted for cancellation of even
harmonic distortion
Tr_{7} is operated as a common emitter amplifier using the emitter impedance of Tr_{8} as its load, ensuring the collectorbase modulation is kept low. Tr_{8} is and retains all the advantages of this mode of connection. The modulation of
 After several years in industrial elec-
tronics, B. J. Codd joined the Electronics Development section of Leic-
ester Royal Infirmary's Physics Department as its senior technician. During the intervening 9 years he has been responsible for the
development of a six-channel foetal e.c.g. monitor, now in use in the Infirmary's maternity wing $_{i}$ and an ultrasonic 2 MHz doppler system for
use in aortic blood flow analysis
the internal collector-base capacitance ${ }^{\text {of }} \mathrm{Tr}_{7}$, thus is now decoupled from the base of ncreasing bandwidth
The output stages are fairly conven tional and their typical problems hav already been discussed. Of general sideration is the mode of feedback use in the power amplifier. Shunt feedback was used as it gave marginally bette ith a slight increase in may be used distortion ancrease in even harmonic

The setting-up procedure for th mplifier depends on the equipmen vailable, and for the best results R_{d} is adjusted for minimus whilst R_{c} is adjusted such that the crossover spikes" just disappear. If only a multimeter is available, then R_{d} should be set such that $I_{\text {cl }}=I_{c 2}$, and urrent through the output transistors Where appropriate all adjustment should be made at 10 k Hz .

Low power amplifier, results

 The amplifier exhibited a slew rate o value shown by (1)(1) slew rate $=\frac{I_{q}}{C_{c}}=\frac{2 \times 10^{-3}}{39 \times 10^{-12}} \approx 50 \mathrm{~V} / \mathrm{\mu}$

This gives a maximum usable frequenc at 50 Vp -p of
(5) $f_{\text {max }}=\frac{\omega_{\text {max }}}{2 \pi}=\frac{40 \times 10^{6}}{25 \times 6.28}=250 \mathrm{kHz}$

To define the closed loop frequenc

Fig.5. Power supplies
was incorporated in the in
with a 3 dB point at 70 kHz .
with a 3 dB point at 70 kHz . The inherent distortion of the system
is shown in table 1, along with the is shown in table 1, along with the
results for the amplifier. All measuremints taken on the amplifier were made with $\mathrm{IC}_{1}-\mathrm{IC}_{2}$ matched, at 50 Vp -p into a 10 k load, and a closed loop gain of 50 .
The noise figure of this stage depends upon the devices used for Tr_{1} and Tr_{2}. For a magnetic cartridge, low noise transistors gave marginally better results than low noise f.e.ts, although for higher resistances, low noise f.e.ts vantage.

Power amplifier

The frequency characteristics were as for the preamplifier and again a low pass 70 kHz filter was incorporated into the input circuit.
The distortion results for the power figures were taken at 40 W continuous into 8Ω with IC_{1} and IC_{2} matched, and the quiescent current adjusted for minimum third harmonic distortion. All
figures fell as power was reduced. If the quiescent current is adjusted above its optimum value, the third harmonic distortion rises to 0.008% at 40 W contenuous into ar at 20 kHz , and falls to a low value when the stage operates in The amplifier was stable with both capacitive and inductive loads, and showed little ringing when driving a wave. Although the distortion figures can be improved if the output stage is biased in class A, it is felt that the amplifier presents an acceptable compromise between minimising distortion
and the convenience of class B.

Fig.8. Block diagram of harmonic distortion test set-up
The audio system
Figure 4 shows a complete audio system based upon the amplifiers just described. Passive: equalisation and tone controls have been used, ensuring that under optimum conditions. An active high pass (rumble) filter was incorporated into the input circuit of the magmetic pick-up preamplifier. This filter point at 25 Hz . The gain of the preamplifier is 34 dB and this circuit is followed by a passive equalisation network which has an insertion loss of $23.5 d \mathrm{a}$ at kHz . The next
stage, which is used for auxiliary inputs,

Fig.9. Complementary current source; Fig.9. Complementary current source,
This modification to the "low power
amplifier output stage further reduces amplifier output stage furth

Table 2. Second and third harmonic levels.				
	nd harmonic	3rd harmonic		
original circuit	0.007%	0.06%		
modified circuit	0.003%	0.003%		
oscillator distortion	0.0025%	0.0003%		

has a gain of 30 dB . Thus the overall sensitivity in the magnetic pick-up position is 3.5 mV at 1 kHz , giving a
maximum input of 500 mV pop at 1 kHz, 1 Vp -p at 20 kHz , and 50 mV pp at 50 Hz , ie. an overload capability (with reference to the nominal sensitivity) of $33 \mathrm{~dB}, 40 \mathrm{~dB}$, and 17 dB respectively.
The signal/noise ratio for this com-
bined stage depends upon the device used for the input transistors, these being shown in the Fig. 3 table.
The passive tone control (borrowed from the Mullard 3 -valve preamplifier) features 15 dB cut and boost with an
insertion loss, in the flat position, of 20 dB . The final stage has a gain of 26 dB which drives either the power amplifier or the low pass filter.
This filter has a 12 or 24 dB /octave slope, the 3 dB points being 7 kHz and

5 kHz respectively. The f.e.t. input operational amplifier used for this stage has a slew rate of $13 \mathrm{~V} / \mu \mathrm{s}$ and a unity | gain distortion of 0.01% |
| :--- |
| 10 kHz . |
| at |
| 0 V pp. at |

Auxiliary circuits

The power supply used was a series pass circuit, supplying high currents with only a small voltage across the series to a minimum.
A delayed relay was used to protect
the speakers against switch-on tran-

Book Received

Audio System Design for Schools and Col- leges, by R. H. Wench, is designed to provide

 leges, by R. H. Welch, is designed to provideimpetus for CSE, 'O' and ' A ' level students to take an interest in the workings of sound reproduction equipment. The preface expre-
sss the view that the book will help student sees the view that the book will help students
and teachers to design and construct audio gear, but one feels that the design aspect of this work has received a fairly shabby deal.
On the other hand, it is an attractive and up-to-date introduction to the field and is a practical guide to the technical side of disc
reproducing equipment Circuits for producing equipment. Circuits
amplifiers are presented - many using linear

$$
13
$$

sients and the output transistors were protected by the now conventional were mounted on a by Bailey and heatsink.

Signal/noise ratios

The measurement of signal/noise ratio was achieved by using the TF2330A wave analyser, taking figures one with reference to a 5 kV bandwidth Figures are also shown corrected for curve A weighting (A.S.A. sound measurements) which corrects for the res posse of the ear for low level signals.

Signal/noise ratio, magnetic

cartridge input

$0 \mathrm{~Hz}-15 \mathrm{kHz}$ bandwidth

Sensitivity
"magnetic" preamp
aux
for full output at 1 kHz
The distortion figures for both amplifiers include oscillator distortion, hum, and noise. The distortion for bot 70 dB
78 dB
sured with a closed loop gain of 50 . So as to realise the low distortion capability of the complete audio system it was necessary to provide a separate it is possible to reduce even further the distortion level in the low power amplifier by replacing Tr_{7} with a compementary current source. The two closed loop gain of 66 dB and an output voltage of 50 V peak to peak into a 10 k load. The results. are shown in the related table. (Table 2).

Conclusion

The object of this approach was, by the use of conventional techniques, to de-
sign an amplifier with levels of distorsign an amplifier with levels of distor-
tion which would make it competitive with current commercial designs. However, a possible area of improvement main in the class B output stage, tonic distortion in class A, third hear level. The s /noise ratio on "magnetic" could have been improved but the fact that at normal operating levels the distortion content was below the sen noise ratio is really only 6 dB above the theoretical minimum for a magnetic cartridge, means that the compromise mems to have been justified.
The design of the complete system lends itself very well to operational
amplifier techniques, and it may well be that, at some future date, an enter prising company will convert it into ic. rm, leaving the audio designer free to optimise the associated circuits, with vement in audi

Printed circuit boards

 A set of glass fibre printed circuit boards .ait. and UK postage) from M. R. Sasin t 23 Keys Rood, London, NW2. Th preamp boards and one power am board. The p.c.bs are also available
 amplifier quality
separately for $£ 4.20$.

\qquad

Volunteers wanted

I.cs - and a very useful chapter goes quite
fully into the design and building of louis beaker enclosures. Turntables, too, receive a good deal of attention - again more practical than theoretical. A good glossary is
provided, albeit with one or two errors and ambiguities, and a list of suppliers of materials and components is included. A small, but irritating point is that references
are not numbered and are difficult to relate to are not numbered and are difficult to relate to
the text. The book has 195 A 5 -size pages, is the text. The book has 195 Assize pages, is
ring
plus pocked in paper covers and costs $£ 2.75$ plus postage and packing from Trent Poly-
technic, Burton Street. Nottingham.

The British Talking Book Service for the The British Talking Book Service for th
Blind, which has supplied records and tape to blind people for many years, is in need of
volunteers to instal and maine volunteers to instal and maintain the tape
cassette players currently in use. A complete cassette players currently in use. A complete
spares service and assistance are available, if required, and the work consists mainly of routine maintenance and assistance to blind people in learning to use the machines
Anyone willing to assist in this way should write to E. L. Wade, British Talking Book Service for the Blind, Mount Pleasant Road,

CIRCUIT IDEAS

Pulse width detector

If the width of the input pulse does not exceed the width of the monostable pulse determined by $C_{1} R_{1}$, the positive
edge of the clock input to the 7474 edge of the clock input to the 7474
produces a 0 at the bistable input and the transistor remains switched off. If the input pulse width is greater than the

74121 pulse, the flip-flop feeds a logic to the bistable which then switches the transistor and l.e.d. on. Because the on until the reset switch is activated.
R. E. S. Abdel-Aal Sunderland Polytechnic

8-bit tracking a-to-d converter

This converter is suitable for encoding audio signals onto an 8-bit microprocessor bus. The output of an updown counter formed by two 74193 i.cs, is converted to an analogue signal by
the ZN425E. This signal is compared

$\boldsymbol{V}_{\mathrm{p}}$ meter

This economical circuit measures the gate-to-source pinch-off voltage of an n-channel f.e.t. without the need to
manually adjust V manually adjust V_{gs}. The unit is parti-
cularly useful when selecting f.e.ts for matched pairs in constant current sources.
J. F. Gregg

Eire
with the analogue input to determine the direction of count, and the 7404 and 7430 provide an end stop to prevent bistables control FF to 00 . The 7474 allowing it to change only when the counter clock is inactive. The clock must run at a higher speed than the interface the 8 -bit output with a data bus, and are enabled/disabled by the device select and read data strobe inputs.
er can be interrogated asynchronously because a correct value
is always obtainable. Because the circuit has an inherent low-pass action, analogue signal conditioning is not necessary and a sample/hold gate is not equired.
Although noise performance is
slightly inferior to successive approximation type p.c.m. encoders, it is not obtrusive.
M. D. Usher
Manchester

Magnetic screen for f.m. tuners

$$
\begin{array}{ll}
\begin{array}{l}
\text { Because it has become common to stack } \\
\text { audio equipment, modulation hum on }
\end{array} & \begin{array}{l}
\text { per wire. Six turns of } 22 \text { s.w.g. will } \\
\text { suffice in most cases and earthing the }
\end{array} \\
\text { v.h.f. is sometimes a problem due to } & \text { wire is a convenient method of an }
\end{array}
$$ magnetic fields from transformers. A simple and well tried solution is to wrap the discriminator or phase-shift coil case with a short-circuited coil of copchoring the spiral in place.

R. G. Young

Peaceha
Sussex

1 to 10 MHz v.c.o.

Most i.c. waveform generators and v.c.os either do not provide sufficient This oscillator is an extension of a well known RC relaxation circuit and offers a 1 to 10 MHz range. Transistor Tr_{1} increases the input impedance for low requency operation and the feedback transistor. Output frequency therefore depends on the control current in the i.e.d. Because the upper frequency limit is above the range of the photowith direct current from a diode bridge. This arrangement also enables one photo-transistor to handle both halves of the oscillation cycle. Fast, lowcapacitance germanium diodes are
necessary in the bridge to minimise voltage drop and unwanted direct charge transfer.
An op-amp is used as a voltage to current converter, and to minimise thermal drift in the control opto-
isolator, a dual device is used with one half in the amplifier feedback path. This technique also improves transfer linearity. At maximum frequency the control current in the relaxation
oscillator and R_{1} is about 1 mA , so R_{1} is oscillator an the required control voltage
selected for at the input.
Although the circuit is simple, it will cover more than a decade range, about 0.5 to 13 MHz in the prototype, and can approximately equal mark-to-space ratio at 10 MHz but this varies at lower frequencies. Linearity is not ideal, primarily because the waveform at Tr_{1} base is not the ideal saw-tooth. How-
ever, this can be improved by a phaselock loop as shown. The internal v.c.o. of a 4046 provides the signal input, and is not within the loop. The comparator input is provided by a divided output from the opto-isolator v.c.o. Linearity,
thermal stability etc. of the circuit are now determined by the 4046 v.c.o. The values of C_{2} and R_{4}, which determine the frequency, are chosen so that only the lower half of the control range is
used because the upper half is less lin
pplied. However a LOCMOS versio f the 4046 offers a higher frequency mit of about 4 MHz which should overcome this problem. D. H. Fallett Bristol

Callstore, from Racal Recorders,answers all the questions.

Date with destiny

For radio amateurs, the most important event for many years - the ITU World Administrative Radio Conference at
Geneva - opens on September 24 and is Geneva - opens on September 24 and is
due to last until November 30 . While theoretically the conference could rewrite completely the entire internatio nal Table of Frequency Allocations fo all services a more realistic view of the
outcome is that much of the table will outcome is that much of the table wile
remain recognizably similar to the pre remain allocations (which are still based largely on the Atlantic City, 1947 conference, although these were modified in 1959 at Geneva and have also been affected by specialized conferences on
space satellites, etc.). Nevertheless important changes affecting the amateur service are anticipated - always assuming that WARC is able to reach real agreements and and further regionalization.
Radio amateurs will be represented at Geneva by an IARU team o accredited "observers", and some countries including tend as members of national delegations.
There is a feeling that the proposals submitted in advance pose few serious threats to the current Region 1 allocations to amateurs either on h.f. or above
30 MHz , but it is realised that at any time during the conference dangers could emerge as part of the inevitable 'horsetrading' needed to reach compromise agreements. The official U.K. proposals 10.1, 18.6 and 24.0 MHz , although Roy Stevens, G2BVN, the RSGB's Telecommunications Liaison Officer has described support for these extra bands from other Region"
Further evidence of the continuing value of the amateur service in con tributing to radio propagation research is contaned in a recent article in the ITU's "Telecommunication Journal"
(Vol 46, VI/1979) by K. J. Hortenbach and F. Rogler of the German broadcasting service, Deutsche Welle. This underlines the importance of "chordal hop long-path" h.f. propagation in providing a reliable broadcast service to
Australia from West Germany. The chordal hop mode was first described some twenty years ago by H. J. Albrecht as a result of careful observations on 3.5 , 7 and 14 MHz signals from West South Wales, Australia. He realised that these signals were heard at times and at strengths which could not be accounted for by conventional multi-hop propagation modes, with their losses due to crossings.
It is now at last becoming accepted that dawn and dusk tilts in the distance chordal hop making transmis-

sion to Australia and New Zealand ex sion to Australia and New Zealand exif amateur bands at 10 and 18 MHz had been available during the past twenty years, the work of confirming the chorconsiderably.

Top band activity

Since the disappearance of the 1.9 to 2.0

 MHz loran pulses, To Band 1.8 to 2.0 MHz) has become a much more attractive night-time amateur band. This has been reinforced by the increasing number of countries (now in-cluding the USSR and Spain) which cluding the USSR and Spain) which of this band. Stew Parry, WIBB, doyen of the 1.8 MHz enthusiasts, has pointed out that good conditions on this band have little relationship to normal h.f.
propagation predictions and he advises propagation predictions and he advises
"the only real way to success is to monitor the band constantly".
The band remains a useful testing ground for low-power equipment with a continuing mixture of s.s.b. /c.w./a.m.
modes. Recent contacts have shown, for example, that Ray Coley, G3IFF, of Havant uses an all-band directconversion transceiver from a motorcycle battery, while a flat-dweller in Northern reland using 28s.w.g. steel wire. The aerial using band is also a good place to try-out the new low-cost v.m.o.s. power f.e.ts such as the VN10KM and VN67AF devices, both of which cost under $£ 1$ and which can readily be used in para

From all quarters

The RSGB Telecommunications Liaison Committee has set up a subcommittee to investigate the (WoAR, June 1979) of the European CW Association that there should be a U.K. c.w.-only "Novice" licence. It is expected that if the idea is approved by the committee, an official apprice.
It is now clear that no further activity can be expected from the Russian amateur radio sater 1978, Si and RS2,
or perational lifetimes hav ascribed to excessive radiation proascribed to excessive radiation pro-
blems during the launch period. Oscar 7 and 8 are still operational, although Oscar 7 launched in November 1974 is thought to be reaching the end of its ong operational life. There is III Oscar (geostationary orbit) launch in Spring 1980 .
John St Clair, ZS2JR, of Port Elizabeth is believed to be the only weather pictures from the geostationary satellite, Meteosat, on 1691 MHz . For an antenna he uses a 2 -metre dish cut from a surplus Post Office $4-\mathrm{m}$
diameter dish. diameter dish.
Tropospheric ducting between
Hawaii and California is reported to Hawaii and California is reported to
have resulted in the setting up of a new world record on 432 MHz . A contact between WB6NMT in California and KH6HME in Hawaii spanned some 4000 km .
The H
The Home Office has agreed that any
r.t.t.y. (radio-teleprinter) mode defined by CCIR documents may now be used by UK amateurs on any band where r.t.t.y. is permitted. Among those taking
advantage of these new facilities are Peter Martinez, G3PLX, and Dave Wicks, G3YYD, who have developed a microprocessor-based system that meets CCIR Recommendation 476 (known commercially as Spector, Sitor
and Microtor etc). Their system, termed Amtor, is proving highly reliable over a 200 km path on 144 MHz .

In brief

During 1978 the number of Australian amateur licences increased from 8483 to 10587, of whom 5611 held 'full' licences, 2933 held 'limited' (Class B-type) licences and 2024 held the more recently introduced 'novice' licences Memof Radio Transmitters increased from 3175 to 3410 during $1978 \ldots$. The sixth Welsh Amateur Radio Convention will be held on September 30 at Oakdale Community College, Blackwood, is to be held on September 22 at Dundee Technical College, Dundee An
"EI/GI Convention 1979" is being held "EI/GI Convention 1979" is being held on October 14 at Ballymascanion House
Hotel, Dundalk, Co Louth ... A "JerHotel, Dundalk, Co Louth A "Jer-
sey Radio Convention" is at Hotel de France, St Saviour Road; St Helier on September $22-23 \ldots$ The RSGB HF Convention, announced for September 15 in Birmingham had to be cancelled due to lack of support An amateur des Expositions, Geneva on September 22 as part of "Telecom 79" The Amateur Radio Retailers Association's national amateur radio exhibition will November 8 to 10 .

PAT HAWKER, G3VA

Passive notch filters - 3

How to design narrow-band filters for the range 1 to 100 MHz

Selecting the right type of filter for the particular job at hand from the literature is laborious and time consuming. And htte information is provided about design procedure and hardware. These articles formulae by way of examples as well as hardware details. To simplify the description of the examples sufficient ormulae and statements are given without theoretical proof; normally heoretical and mathematical ection. A bibliography accompanies final part.

THESE ARTICLES concentrate mainly on null-type notch filters derived from a lattice or Wheatstone bridge.
At the notch frequency the arms of the

Example 5: Helical resonator low-Z notch filter

To avoid confusion in the present example the suffix o is dropped from f_{0} and $\omega_{0} ;$ instead f and ω are used.
A notch filter is required at $f=66 \mathrm{MHz}$ with 3dB bandwidth of $f_{3}=1 \mathrm{MHz}$ and $R_{\mathrm{S}}=R=75 \mathrm{ohm}$. From equation 4-7

$$
L_{\mathrm{b}} / 2=\frac{R / 2}{2 \pi f_{3}}=\frac{75 / 2}{2 \pi}=6 \mu \mathrm{H} .
$$

To have small insertion loss, say of 1 dB , $2 \mathrm{R}_{\mathrm{a}}$ is about $2 \mathrm{R}_{\mathrm{a}}=20 \mathrm{ohm}$; hence $R_{b} / 2=2 R_{\mathrm{a}} / 4=5 \mathrm{ohm}$. From equation $75+75$

$$
\frac{75+75}{75+75+20}=0.88 \rightarrow 1 \mathrm{~dB}
$$

From equation 4-1

$$
Q_{b}=\frac{\omega \cdot\left(L_{b} / 2\right)}{R_{b} / 2}=\frac{2 \pi 66 \times 6}{5} \approx 500 .
$$

To achieve such a high Q a helical resonator is tried, described in
references 15 to 17. In the present example a helical resonator in a square shield is used. From the nomogram, on page 502 of Handbook of Filter Syn 500 is selected on the right hand Qide vertical scale. A square copper tubing of inside dimension 0.8 was available. Hence from the nomogram a straight horizontal line through $Q=500$, shield about 100 MHz , i.e. at $f_{o c}=100 \mathrm{MHz}$ the helical resonator behaves like a
bridge are made to resonate into four equal resistances which perform a null of the bridge and no output of the At all other frequencies the filter acts as an all-pass network.
The lattice which possesses four resonant arms is a balanced type of network. In most practical applications an unbalanced or grounded form that employs only two resonant arms is preferred, ach Thansforme are
configuration amber of unbalanced configurations, all of which use the same hybrid transformer and the choice depends on the particular application at hand. The notations of the formulae
refer always to the prototype lattice thus the same set of formulae serve all the variations.
quarter-wave transmission line with the far end short-circuited and the near end open circuit. At lower frequencies the ance is

$\mathrm{X}=\mathrm{Z}_{0} \tan \theta \quad 5-1$

where Z_{0} is the characteristic impedance of the helical resonator
$\theta=\frac{f}{f_{\mathrm{oc}}} \cdot \frac{\pi}{2}$ radians $\quad 5-2$
f is the notch frequency $(66 \mathrm{MHz})$, and f o the open-circuit resonance frequency of the helical resonato (100MHz).

$$
. \theta=\frac{66}{100} \cdot \frac{\pi}{2}=1.037 \text { radians }
$$

o simply notation replace $\mathrm{L} / 2$ o simply notation replace $L_{b} / 2$ istic impedance of the helical reson ator is found from

$$
Z_{0}=\frac{2 \omega L}{\left[\frac{\theta}{\cos ^{2} \theta}+\tan \theta\right]}
$$

Thus
5-3

Joining $Z_{0}=870$ ohms point on the left
hand side scale of the nomograph with esonant frequency 100 MHz , the result a coil diameter of 0.6 in and number of cil turns is 17 . Also the wire gauge is 23 (right hand side scale). A grooved cer amic coil former of diameter 0.6 in wa available and was wound with 15 turns
of 23 s.w.g. tinned copper wire. Coil height was 0.7 in . The coil was then fitted inside 1.4in long square copper tubing of inside dimension 0.8 in , men tioned above. One end of the coil wa soldered to the copper tubing Tesonator turned out to be the helica Re-calculating equatio be $f_{o c}=96 \mathrm{MHz}$. with $0=1.08$ quations $5-2$ and $5-3$ $Z_{o} \approx 750 \mathrm{ohms}$, which closely gives he nomograph 15 turns point To find the resonating capacitor

$$
C=\frac{C=\frac{1}{\omega Z_{0} \tan \theta}}{\frac{1}{2 \pi 66 \times 750 \tan 1.08}}=1.72 \mathrm{pF}
$$

Fig. 5-1
The practical notch is shown in Fig. 5-1 where the 3 dB bandwidth is 1.1 MHz a 6 MHz .
The 18 pF capacitor across $2 R_{\mathrm{a}}$ was ting of $2 R_{a}=250 \mathrm{hm}$ and best notch rejection of -76 dB . The function of the capacitor may be explained as balan cing the stray capacitance appearing across arm 'b' of the notch circuit. sthat shown in example 1 .

Derivation of foregoing formulae The helical resonator is a short reactance given in equation 5-1. When

$\theta=\pi / 2$ radians, $x=\infty$ and thus $\theta_{o c}=\pi / 2$. For $\theta<\pi / 2$ the reactance is inductive, shown in reactance graph in Fig. 5-2. reforence 7 , pp.552/3)

$$
\theta=\beta x=\frac{2 \pi}{\lambda} \cdot x=\omega T x
$$

Hence for a transmission line whose length x equals quarter wavelength λ,

$$
\theta=\frac{2 \pi}{\lambda} \cdot \frac{\lambda}{4}=\pi / 2=\theta_{o c},
$$

and

From equation 5-2, a series circuit of inductance L in series and Fig. 5-3. are to be met

$$
\text { As } \theta_{\mathrm{oc}}=\pi / 2
$$

$$
\begin{gathered}
\frac{\theta}{\theta_{o c}}=\frac{\pi T x}{\omega_{\mathrm{oc}} T x}=\frac{f}{f_{\mathrm{oc}}} . \\
\frac{\theta}{\pi / 2}=\frac{f}{f_{\mathrm{oc}}} \text { or } \theta=\frac{f}{f_{\mathrm{oc}}} \cdot \pi / 2
\end{gathered}
$$

which is equation 5-2.
At ω the helical resonator approximates to reactance of slope S,

$$
S=\frac{\mathrm{d} x}{\mathrm{~d} \omega}=\frac{\mathrm{d}\left(\mathrm{Z}_{0} \tan \theta\right)}{\mathrm{d} \theta} \cdot \frac{\mathrm{~d} \theta}{\mathrm{~d} \omega}
$$

$$
\begin{aligned}
& \theta=\frac{\omega}{\omega_{o c}} \cdot \pi / 2 \\
& \frac{d \theta}{d \omega}=\frac{\pi / 2}{\omega_{o c}}
\end{aligned}
$$

Hence $\quad S=Z_{0} \sec ^{2} \theta \cdot \frac{\pi / 2}{\omega_{0 c}}$
The slope at ω may also be presented by

with capacitance C. Thus $x=\omega L-1 / \omega C$

$$
S=\frac{\mathrm{d} x}{\mathrm{~d} \omega}=L+\frac{1}{\omega^{2} C}
$$

Hence the helical resonator may be represented, at frequencies near ω, by equivalent circuit of arm ' b ' is shown in
For resonance at ω, two conditions
Reactance $x=Z_{0} \tan \theta$ has to be cangative reactance of small c

$$
1 / \omega L=x=Z_{0} \tan \theta
$$

which proves equation 5-4.
Resonance at ω also to occur with inductance L in series with capacitors c and C,

$$
\omega^{2} L=\frac{1}{C}+\frac{1}{c}
$$

L is the inductance $L_{b} / 2$ in equation 4-7 for low Z notch.
From equation 5
From equation $5-7$
and from equation 5-6
$\frac{1}{C}=(S-L) \cdot \omega^{2}$
Uubstituting both items in equation 5-8 $\omega^{2} L=(S-L) \omega^{2}+\omega^{2} . \underline{Z_{0} \tan \theta}$

$$
2 L=S+\frac{Z_{0} \tan \theta}{\omega}
$$

Substitute S from equation 5-5

$$
\begin{aligned}
2 L & =Z_{0} \sec ^{2} \theta \cdot \frac{\pi / 2}{\omega_{o c}}+\frac{Z_{0} \tan \theta}{\omega} \\
2 \omega L & =Z_{0}\left(\sec ^{2} \theta \cdot \frac{\pi / 2 \cdot \omega}{\omega_{o c}}+\tan \theta\right) \\
& =Z_{0}\left[\left(\sec ^{2} \theta\right) \theta+\tan \theta\right]
\end{aligned}
$$

This proves equation 5-3.
Switched notch filter
The circuit of Fig 5-1 was required to be witched between two adjacent car riers, the difference in frequencies being about 0.4 MHz . A small bistable relay was employed, see Fig. 5-4. The 5pF trimmer was used to tune to the lower
frequency first; then the 25 pF trimmer used tó tune the other frequency (see used
ref. 6)

Example 6: Crystal low Z notch and bandpass

This example, Figs. 6-1 and 6-2, was not a design effort, but rather an exercise to find out the usefulness of a. 3.5 MHz crystal, which happened to be available,
in a notch circuit (see also ref. 3). The hybrid transformer was similar to the one in Fig. 1-8, but with four bifila

To balance the notch $R_{2}=R_{\mathrm{b}}$ an $C_{a}=C_{b}$. From equation 4-7 (see also re $\mathrm{C}_{\mathrm{a}}=\mathrm{C}$
13)

$$
L_{\mathrm{b}}=\frac{R}{\omega_{3}}=\frac{2 \times 75}{2 \pi 100 \mathrm{~Hz}}=0.24 \mathrm{H}
$$

Fig. 6-1
13.5 FREOUENCY MHZ

Fig. 6-3

Bandpass

When R_{a}. was removed from the circuit
of Fig. 6-1 a bandpass response was In the
justment of C^{\prime} thus with careful adparallel capacitance $\mathrm{C}_{\mathrm{b}}^{\prime}$ of the crystal enabled an attenuation of -7 dB to be obtained.

Bibliography

Maximum output networks for telephone
substation and repeater circuits. G. A. substation and repeater circuits. G. A. American IEE, Feb. 1920, vol. 39 part 1, p.232. p.232.hesis of passive networks. E. A.
Suillemin. Wiley 1957, pp. 196 to 201. Guillemin. Wiley, 1957 , pp. 196 to 201 .
3 Handbook of filter synthesis. A. I. Zverev, Wiley, 1967, p.422.
Reference data for radio engineers. ITT, 1956, 4th edition, p. 253 .
5 As ref. 4 , pp. 143, 145 .
6 Design of digital notch filters. K. Hirano, 5. Nishimura and S. K. Mitra. IEEE Trans,

Notch filters

7 Wavetraps with infinite Q. T. Roddam Wireless World, vol. Apr. 1945, p. 118 . 1954, LB-961.
9 Notch filters. G. Kalanit, R.\&R. Research 126, Nov. 1964.
10 The theory of null traps. A. N. Thiele,
Proc. IREE (Australia), July 1965. 11 Design of a high frequency notch filter. F . letters, vol. 56, 1968, p. 327 .
12 Combating television interference. Wire-
less World, vol. $74,1968, \mathrm{p} .329$.
Filters
crystals
cystals Ral filters for use in unbalandepass crysW. P. Mason, BSTJ, vol. 16, Oct. 1937, no.4. ${ }^{1937}$ 14 Narrow-band crystal filter design. J,
Lang, Electro-Technology, June 1964, Lang,
p.116.
Filters employing helical resonators
15 Helical resonator design chart. W. W. tronics, 12 Aug 1960 . 1140 necht, Elec 16 Switched notch filter for Guard carrier system in Band I. G. Kalanit, R.\&\&R.
Research Ltd, Apr 1 lines.
Filters employing surface wave resonators
1870 MHz surface-acoustic-wave resonato notch filter. D. P. Akitt, Electronics Let-

Hybrid transformer

20 Some broadi-band transformers. C. L.
Ruthroff, Proc.IRE, vol 47 , Aug. 1959, Ruthroff, Proc.IRE, vol 47, Aug. 1959, P.1337.
21 Hybrid transformers. E. F. Sartori, IEEE
Trans, vol. PMP-4, Sept. 1988, p. 59

Appendix G. Derivation of the hybrid transformer from Wheatstone bridge

Resistive bridge

The Wheatstone bridge in Fig. G-1, re-drawn as a latticie in Fig. G-2, in re-drawn again to a
tetrahedron shape in Fig. $\mathrm{G}-3$ to show its three-fold symmetry. Each pair of nonadjacent arrss is called a conjugate pair (see
reference 1). When the bridge is balanced, an reference 1). When the bridge is balanced, an
e.m.f. produced in any arm will not induce any power in its conjugate arm.
Thus, for an e.m.f. in arm 's', no voltage drop exists across ' r ', i.e. $V_{3}=V_{4}$, and the arms exists across r, i.e. $V_{3}=V_{4}$, and the arms
resistance ratio is $m / n=P=m$ or $p n=m$. G-1
Similarly for the Similarly for the conjugate pair ' n ', ' p '; an
e.m.f. in ' n ' produces no power ' p '. $V_{1}=V_{3}$ when $s / m=q / r$
$\therefore s r=m q$
and from
and from equation G-1
$s r=m q=p n$
G-2
Equation G-2 provides the condition for the three conjugate pairs where each arm is
isolated from its conjugate. For an e.m.f., say, gate. For an e.m..f., say,
in arm ' s '; the power will be dissipated in 's and its four adjacent arms, but none in ' r '. For maximum power transfer from ' s ' to the
other arms; $s=Z_{\text {in }}$ in Fig. $G-4$, where ' $Z_{\text {in }}$ ' is the input impedance. As no voltage appears across 3 , 4, one can open-circuit or short-
circuit or put any load ' r ' and get the same circuit or put
result for ' '
For
.
'

$$
\frac{1}{\mathrm{z}_{\mathrm{in}}}=\frac{1}{p+q}+\frac{1}{m+n}
$$

From equation G-2
$p=\frac{m q}{n}$

$$
\frac{1}{z_{\text {in }}}=\frac{1}{\frac{m q}{n}+q}+\frac{1}{m+n}=\frac{q+n}{q(m+n)}
$$

thus

$$
s=Z_{\mathrm{in}}=\frac{q(m+n)}{q+n}
$$

From equations G-2, G-3 and Fig. G-4,
 $$
Z_{\text {out }}=r=\frac{m q}{s}=\frac{m(q+n)}{(m+n)}
$$

S̄ymmetrical resistive bridge
The tetrahedron is made symmetrical about The verticalal plane through nodes 1,2 and 5 which is the centre of arm ' r ', by making
$p=m$ and thus $q=n$. It is sis siown in Fig. G-5,
where from equation $\mathrm{G}-3$;

$$
s=\frac{n(m+n)}{n+m}=\frac{m+n}{2}
$$

G-5

Fig. G-2

WIRELESS WORLD. OCTOBER 1979

Fig. G-7

$$
r=\frac{m(n+m)}{m+n}=2 \cdot \frac{m n}{m+n}
$$

G-6

Resistive hybrid transformer circuit

 The tetrahedron can now be divided into two formers called hybrid transformers (see also references 20,21 , If the transformers shown in Fig. G-6 have the same ratio as the corresponding arms ${ }^{\text {' } m \text { ' and }}$ ' n ', no voltage dropdevelops across 4 to 5 and across 5 to 3 . Thus, develops acrosss 4 to 5 ance remains, while the number of arms is reduced from total of six to four in each half.
The left-hand side, re-drawn in Fig. G-7, provides the general hybrid network, with.
two conjugate pairs of arms (see also reference 21).
equation G-5 and G-6 $2 s=m+n \rightarrow$ series combination of m and n, and
$r / 2=m n /(m+n) \rightarrow$ parallel combination of m $r / 2=m n / m+n) \rightarrow$ paraliel combination of m
and n . Thus, $2 \mathrm{sr} / 2=m$ are the two conjugate pairs G-7. If, for example; $m / n=2 / 1$ and
m is 30 ohm, then $n=15 \mathrm{ohm}, 2 s=45 \mathrm{ohm}$ and

$$
r / 2=\frac{30 \times 15}{30+15}=10 \mathrm{ohm}
$$

The hybrid transformer turns ratio is i: E . The power transmitted by an e.m.f. in any one
arm is divided between the source and the arm is divided between the source and the
other conjugate pair. Half is absorbed by the source while the other half is divided between the arms of the other conjugate pair in tions to Fig. G-7 are shown below, In Fig. G-8 arm ' 2 s ' is transformed by the uto-transformer action of the hybrid from
$2 s\left\{\frac{m}{m+n}\right\}^{2}=\frac{m^{2}}{m+n}$ across nodes 1,5

Hybrid transfor

 When $m=n$ one recognises the hybrid transThe foregoing in this section describe the condition at null when the arms are resistive. When the reactive arms are not in resorancethe condition of a constant resistive network is $R^{2}=a . b$ where the source equals the load is $R^{2}=a . b$ where the source equals the load
equals R. The configuration of Fig. G-1 may equalrawn, as in Figuration of Fing. G-1 may rransformer of turns ratio i:1.

Fig. G-10
Fig. G-11

Fig. G-12
Fig. G-13

This is possible because the voltage at point 5 is a constant at all frequencies due to the ymmetrical relation $R^{2}=a . b$. By inspec-
ion, the voltages across arms 'b' are the nverse of the voltages across arms ' a ', thus across nodes 3,4 behaves like a scee-saw', the
by the same process as that of $\mathrm{Fig} \mathrm{G}-5$ tiz
by the same process as that of Figg. G- 5 to Fig
G-6. Thus the notch filters described in the above examples may be realised in any of the hybrid configurations shown in th
remainder of the diagrams Figs. G-14 to G-19. remainder of the diagrams Figs. G-14 to G-19,
Arms ' a ' and ' b ' may be interchianged. Th right hand side of Fig. G-13 is re-drawn in Fig

Fig. G-14

Fig. G-16

Fig. G-18

Fig. G-17

Fig. G-19

Speaker directivity and sound quality continued from page 63

which will be considered in more detail ater in the contribution.
There are no single unit loudspeakers that cover the whole of the audio
frequency range in a fashion that is acceptable in the hi-fi field, two, three, four or more units being employed to achieve a flat frequency response. The diaphragm diameter of the unit is decreased as the frequency range covered or 12 in unit may be used to cover the range up to about $700 / 1000 \mathrm{~Hz}$, a 3 in or 4in diameter unit used to deal with the 000 Hz with a lin or $1^{1 / 2}$ in diameter unit
used to radiate the signal in the band above 4000 Hz . In some more elaborate systems a super tweeter may be employed to extend the
range beyond 18 to 20 kHz .
range beyond 18 to 20 kHz .
To a first approximation the use o three or four units allows the designe to adjust the " Q "/frequency relation by approximate choice of the frequencies chosen from the crossover points. How-
ever the speaker system designer does not have complete freedom to adjust the " Q " in this way for the choice of changeover frequencies is primarily range of each of the uspable frequen

All domestic nultiple-uit typer oudspeaker systems have generally similar polar distribution, for this is basically controlled by well established laws of physics. In the low frequency range the polar distribution is deter-
mined by the area of the front of the enclosure and the location of the speaker with respect to the walls and floor. At rather higher frequencies the polar distribution is controlled by the
dimensions of the woofer cone, an indimensions of the woofer cone, an insolid angle into which the acoustic radiation is concentrated. In the midrequency range the solid angle is again determined by the diameter of the midrange speaker cone with the frontal that decreases with increase in requency.
In the frequency range radiated by the tweeter cone diameter is the major controlled by the enclosure geometry and the contours of the cabinet edges. Thus all multiple unit systems have a "Q"/frequency relation much as and cabinet dimensions merely shifts he boundary region up and down the requency scale without changing the general shape of the curves.

Sound power output

Lack of data on the " Q " of domestic Lack of data on the "Q" of domestic
loudspeakers is largely due to the difficulty there is in measuring the parameter. There is a British Standard in preparation that covers the method of measuring " Q " and "DI" but the cademic importance. A measurement of " Q " requires that the sound power output of the loudspeaker is deter mined, together with a measurement of he sound pressure level at a point one its axis. Suitable techniques will be described in a later contribution.
This article can be summarised as suggesting that the polar distribution of sound energy round a loudspeaker has a han a mere absence of top response at points of the axis of the loudspeaker The ideal polar diagram would appear confine the sound energy distribution ot something less than ± 90 degrees in mportant that the angular distribution hould not vary with frequency, particularly at frequencies above about mzet At present this is an ideal that that technical skill may circumvent the apparent limitation imposed by basic physical laws.
a later article the author will discuss a new technique for measuring th

Viewdata (Prestel) keyboard nterfacing and editing specifications defined by the Post Office for its Prestel information retrie- val service are met by the latest keyboard from Cherry Electrical Products, and the keyboard also fulfils the need for the control keys to deliver two codes rather than one, which is one of Prestel's departures from the norm. The unit is designed to plug into a television display unit directly via a 5 pin DIN plug, and an has been provided at the back of the unit to make possible the transmission and reception of data from the central Prestel computer, using a standard Office modem. A nine-key pad provides functions such as normal or double height characters and continuous or single graphics and further keys provide clear, start and end functions. Cursor control is also available as well as the option of flash or steady display. Serial output data is released from the keyboard at a crystal-controlled rate of 75 baud, which means that the fast typing rates which can be achieved can out-pace the rate at which data is assimilated. An internal store of 64 characters prevents any loss of data under 'these conditions. The keyboard costs $£ 175$ without case. Cherry Electrical Products Ltd, St Albans Rd, Sandridge, Herts AL4 9BP. WW301 Valve audio amplifiers With the exception of the preamplifier for magnetic cartridge circuits, which are entirely solid state, the B.A.S. Sound power amplifier model P50 and preamvalved circuits producing two outputs of 50 W (continuous sine wave) into 8Ω loads. The makers que used in many stereo audio systems, where two amplifiers are employed in a single intetion uses two independentlypowered identical mono	amplifiers, the main aim here being to limit intermodulation distortion to a minimum level. Signal amplifying stages use familiar valves such as the ECC82, the ECC83 and the Z729, while the output stages use KT88 power tetrodes in class $A B$. The frequency response of both preamplifiers and power amplifiers is 20 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}$ with a phono overload level of +48 dB at 1 kHz . Switched input capacitance (six values) permits a selection of magnetic cartridges to be used with the preamplifiers. Thermal protection is provided, excessive operating temperature being indicated by a failure lamp and automatic full channel switch-off. An optional movingcoil cartridge preamplifier is also available and a monitoring facility is provided in the form of a power meter for each channel, indicating average output power. The amplifiers can be rackmounted and presentation is similar to that of many transistor amplifiers. The complete system is claimed to have an unusually high standard of mechanical and electrical engineering. Beard Audio Systems Ltd, 98a Oakland Grove, London W12 0JB. WW302 WW301 WW302	Dual tone bandpass filters The AF121 and AF122 are dual tone multi-frequency bandpass filters intended for use with digital tone detection circuits, a possible application being tone detection in telephone circuits. These filters are intended to replace discrete designs without requiring additional external components or adjustments. Two bands are covered the AF121, separating frequencies between 697 Hz and 941 Hz from other signals, and the AF122, functioning in the same way for frezuenc.es together, the filter 1633 Hz Used separation is 40 dB ; both filters are 6 th order elliptic bandpass filters available in two versions, each with a different ripple level. Items with a " sCJ " suffix have a maximum passband ripple of 2 dB peak-to-peak and those with a "iCJ" suffix a 4 dB ripple. National Semiconductor (UK) Ltd, 301 Harpur Centre, Horne Lane, Bedford. WW303 16-bit microprocessor evaluation board A fully assembled and tested evaluation unit based on the Z8000 microprocessor is available from Advanced Micro Devices. In its basic form the AMC96/4016 incorporates the Z 8000 16-bit m.p.u., 8 K bytes of r.a.m., 24 parallel i/o lines, two RS232C serial i/o ports, 12 K in addition to a system clock and

resident monitor. One serial i/o an RS232C or ton thed as either interface, the other is RS232C only. Two 16-bit counters in an Am8253" counter/timer provide baud, for each serial i/o port. The baud, for each seriali/o port. The
third 16 -bit counter in the Am8253 is available for user programs. The complete unit will
also directly control a standard also directly control a standard
c.r.t.t terminal or a keyboard with
a a 20 character alphanumeric display; the latter is available as a
part of the evaluation board. Optional features are also available including a full decoded
keyboard, an e.p.r.o.m.resident ASCII one-pass, line by line assembler, and a universal protoassembler, and a univessame family
typing board of to
form roviding positions for up to form providing positions for up to
$95 \mathrm{ji.cs}$. A card enclosure for mounting these additional boards is also available. The basic
evaluation board, complete with monitor 4 MHz crystal-controlled timebase costs $£ 450$. Advanced
Micro Devices (UK) Grosvenor Place, London SWIX 7HH.
wW304
Scanning general coverage receiver
Automatic scanning over Automatic scanning over the
frequency range 50 kHz to frequency range 50 kHz to
29.7 MHz at any desired speed is

LETTER TO THE EDITOR

STILL NO VHF/FM IN NEW ZEALAND

Norman Mcleod's letter in your November
1978 issue regarding a.m. broadcast reception 1978 issue regardng a.merting points, which have particular relevance in this country, New Zealand, because we still do not have v.h.f./f.m. radio. All sound broadcasting here
is restricted to a.m. on the medium wave bands, apart from a very limited short wave service, which carries the internal service
programmes anyway. Receivers such as J.W. programmes anyway. Receivers such as J. W.
Herbert's homodyne (which was developed Herbert's homodyne (which was developed
here) and to which Mr McLeod referred, are essential to get any high quality broadcast
signals to feed a domestic audio installation. signals to feed a domestic audio installation.
Paradoxically, it has been variously estimated that there are already between
20,000 and 100,000 f.m. receivers in New 20,000 and 100,000 f.m. receivers in New
Zealand. (My household has 5!). The history of attempts to introduce f.m. radio to New Zealand is a sorry one of lifference, procrastination, and excuses, political interference in broadcasting. The first event to impede the introduction of f.m. radio was an extremely short-sighted
decision of the N.Z. Post Office to allocate most of the international f.m. band to twoway radio/radio-telephone use. Although the Post Office were to have the band cleared
1980, they have now relaxed this to 1982 ! Subsequent events which have contributed to the delays are the introduction of
colour television, the estabishment and netcolour television, the estabiserment run tv channel throughout the country and,

A 1973 report which recommended the fragmentation of the one government
broadcasting organization into four corporations contained an interesting reference to
fm. radio, which admited its technical ad m. radio, which admicted its technical ad
vantages, but dismissed it with the statement, and I quote, "but the submissions to the committee did not reveal the existence as
yet of any large body of opinion pressing for yet of any large body of opinion pressing for
the change (from a.m. to f.m.)." Thus the public not only has to know about f.m. without having any transmissions to judge it
by, it also has to take the initiative in showing the administrators of broadcasting the advantages of high quality transmission methods!
F.m. radio has however always been a
useful talking point! Several directors general of government broadcasting in New Zealand have publicly referred to f.m., one director general in 1975 even speaking of
"f.m. within five years". The five years are almost up and there is not even a commitment to start f.m. transmission yet! The need
for f.m. outlets has become more acute with for f.m. outlets has become more acute with
the present radio corporation's practice of using the one cultural network for sports
uroadcasts, particularly during the summer broadcasts, particularly during the summer
months. When cricket commentaries are months. When cricket commentaries are
rebroadcast from Radio Australia, thiese often pre-empt regular programmes until
well into the evening! well into the evening! Last year a combined government and
independent broadcion pared a compreheacasters committee prepared a comprehensive report on f.m. broad-
casting, which was presented to the Minister
of Broadcasting in October. I believe now
that there will be no action on this report because of the financial crisis I mentioned previously. The finances of both governmen
run tv channels are such that cost cutting and pruning is necessary, and even if there was motivation to start f.m. broadcast ng, there is no money to do it! Unfortun-
ately, radio seems to have become the poor relation of broadcasting.
Ironically, the government radio corpora-
tion, Radio New Zealand, and two of the private stations have stereo studio facilities Radio New Zealand found that the overseas broadcasting organisations weren't inter-
ested in mono recordings of New Zealand programmes, and in order to send them overseas, programmes had to be recorded in tereo. So the tax dollars that support Radio ting organizations, not the New Zealand listener who contributed them!
I now realise that rigidly government and other users the protection and benefit of certain standards and services, is actually, by its clumsy and ponderous procrastination
denying radio listeners any f.m. service at all This service is available in most developed countries of the world. The introduction of .m. radio in New Zealand remains where
has been for 15 years, bogged down in a has been for 15 years, bogged down in a Keith Macdonald ZL2A WM Silverstream
New Zealand

hlomast HILOMAST
SYSTEMS

PNEUMATIC TELESCOPIC MASTS

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON STREET HEYRIIDGE-MAL
ESSEX CM9 TNB ENGLAND
Tel MALDO MALDON (0621) 56480
TELEX NO. 995855

Top marks in one clear sweep.

Feedback to contain a lot more features for your money. And you'd be right-the SFG606 with its crisp frequency marker does just that So you sweeps up to 4 decades of frequency-bi-directionally. So you can avoid problems of transient effects. It maintains low signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep - so it's ideal outputs over the frequency range 0.01 Hz to 1 MHz
And with that beautifully sharp, fine line frequency marke that gives you accurate determination of spot frequency on the
display the SFG606 really does score top marks. Read all abo the SFG606 and all its companion test instruments in the Feedback 600 range. Send to
Feedback for literature today. Feedback Fectback for ir ieraturucroday. Feedback
 Instruments P.O. Box 19. Orchard Road
Royston. Herrs. SC 5 SH
Telephonc: Royston $451+5$.

Simply ahead!

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

wW - 030 FOR FURTHER DETAILS

WW-081 FOR FURTHER DETAILS

LCR TESTING with the B424

As fast and as simple as that, for batch testing, laboratory use or instrument servicing. servicing.
Accuracy 0.25% over a wide measurement range.
With its companion CA4 jig unit, the B424 Meter forms an easy-to-use L C and R Component Test Station
and all for less than $£ 600$.

ww - ill for further details

KEYBOARD TERMINAL

 The characaters can be any of the 96 ASC 11 alphanumerics and any of the 32

 ?
Mautrimias
138 KINGSLAND ROAD, LONDON E2 8BY
Accoss/Barclaycards accepted
WW - 057 FOR FURTHER DETAILS

Newnes

Book of Audio

Get the best out of your hitif equipment with
Donald
Deld Donald Aldous, Dave Berriman, Clement Brow

Vivian Cappel, John Gardner, Fred Judd and | Vivan (apael, |
| :---: |
| Gordon King |

- A technical but casily understood revies of a a dio equip-
 and why things work.
- A comprchensive s.veev for the enthusisst as well as the newceref explaining how to choose wiscly from the
vast selcection of culipment availabe, and daso how to
 tape and disc and hhe various mans of th
with particulare emphasisis on hish hidelity
- A comprenensive directory of manufactures, agents and
- Information on prof essional recording record making,
copyyight, noise retuction systems and radio wave engths.

Tis Dawnes tedinfoul Books

"We've £150,000 worth of recording gear working 24 hours a day - all fed from the OTARI MX5050B.
On a cost effectiveness basis alone the MX5050B is unbeatable, but when taking into account sheer professionalism and performance, it is unequalled by recorders three times the price.

Mike McLoughin, Chief Engineer, Independent Tepe Duplicators, Aylestury.

1-7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879

Profergional Qudliky, Lou cork Porkble rerminglfromdifer

The Cub Terminal ideal for use with micro-

 processor evaluation kits and industrial displays offers the following features:- Large, clear 12 " display.
- Upper and lower case characters
- 7×9 dot matrix characters.
- 16 lines each of 64 characters
- Low profile separate keyboard.
- Auto-scrolling of text
- Available as display only unit

The Cub terminal is available at $£ 380$ lone off price) but less than $£ 300$ in moderate OEM quantities. Display unit only price $£ 340$. 12 month factory
Prices quoted include a 12 warranty.

For further information, contact Cifer today.

Dimensions \& Weight

Width: 100 mm Height: 110 mm Length: 140 mm Weight: 350 g Our Desk Meters are designed as teaching aids for use in both
Elementary and High Schools. An extremely useful feature is Elemenspernt plastic material which forms the front and base portions of the unit. Through these windows students are abbe to
see the interior clearly and teaching becomes more convenient.

NEW Modem

 home studycourses inelectronics.Complete Self-sudy training in:

1) Basic practical electronics - curcuit diagram masters - building oscilloscope and other test gear.
2) Training for Radio Amateur Licence. 3) Training for City \& Guilds and other 3) Training for City \& Guid
a) Servicing and maintenance
and other electronic equipment.
b) Digital electronic and Computer technology.
Brochure, without obligation to:-
British National Radio \& Electronic
School P.O. Box 156, Jersey, Channel Islands

British National Radio \& Electronic
chool P.O. Box 156, Jersey, Channel Islands
NAME
ADDRESS
(Block caps please).
Specialists in electronic training.

Z \& I AERO SERVICES LTD. Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF Tel. 7275641 Telex 261306	
SPECIALOFFER OF BRAND NEW USSR MADE MULTIMETERS	
	TYPE U4324 PRICE complete with test leads and fibreboard storage case $£ 9.50$ 'Packing and postage $£ 1.20$
TYPE U4323 COMBINED WITH SPOT FREQUENCY OSCILLATOR PRICE, in carrying case, complete with leads and manual £8.00 Packing and postage $£ 1.00$	$\left.\begin{array}{c}\text { TYPE U4341 } \\ \text { COMBINED MULTIMETER AND } \\ \text { TRANSISTOR TESTER }\end{array}\right]$
THİS OFFER İS VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15\% V.A.T. ON THE TOTAL	OUR 1978 CATALOGUE/PRICE LIST OF VALVES, SEMICONDUCTORS PASSIVE COMPONENTS AND TEST EQUIPMENT IS AVAILABLE. PLEASE SEND P.O. for £0. 30 FOR YOUR COPY

 WEST HYDE DEVELOPMENTS LIMITED, Unit 9 , Park Street Industrial Esstate, Ayleshury, Bucks. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex 83570

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

The first ever kit special by the Ambisonic team. W.W. July. Aug. ' '77. selections is linear throughout and does not rely on listener fatiquing logic enhancement techniques. Both 2 or 3 input signals and 4 or The decoder is Inear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input sigg
output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet.t. panel, knobs, etc. Complete kit, including licence fee £49.50 + VAT or ready built and tested $£ 67.50+$ VAT

NEW S5050A STEREO AMP

50 watts rss-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}, \mathrm{Mags} / \mathrm{n} 80 \mathrm{~dB}$
Output device rating 360 per channel Tone cancel switch. 2 tape monitor switches. Metal case-comprehensive heatsinks Complete kit only $£ 63.90$ + VAT.

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" pubbished Intruder 1 has been re-designed by Integrex to incorporate several new features, along
with improved performance. The kit is even easier to build The internal audibbe with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seco
the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Complete kit $£ 49.50$ plus VAT.

Wireless World Dolby noise reducer
 trademark of Dolby Laboratories Inc.

Featuring

- switching for both encoding (low-level h.f. cumpression) and decoding
swithing for both encoding (low-level h.i. compression) and decod
a switchable e.t. stereo multitex and bias ifter
provision for decosing Dolty f.m. radio transmissions (as in USA).
- provision for decoding Dolby f.m. radio transmissions (a
no equipment needed for alignment.
nes. machines.
ypical performance

Harmonic distortion 0.1% at Dolthy level typically
0.05% oner over most of band, rising to a maximum of
0.12%
Signalito-noise ratio: 75 dB (20Hz to 20 kHz , signal
at Dolby level) at Monitor output
suitability for both open-reel and cassette tape machines
check tape switch for encoded monitoring in three-head machines.
Complete Kit PRICE: $\mathbf{£ 4 3 . 9 0 \text { + VAT }}$

Calibration tapes are avaitable for open-rel use and for casete (speity which)
Price £59.40 + VAT
Single channel plug-in Dolby PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components Please add VAT @ 15%

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?
INTEGREX LTD.

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button
FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo
Amplifier.

 etc.), THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF $88-104 \overline{\mathrm{MHz}}$. 30 dB mono S / N @ $\mathrm{H} .2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PRICE NELSON-JONES MK. 2 STEREO FM TUNER KIT Price: $\mathbf{6 6 9 . 9 5 + \text { VAT } . ~}$ NELSON-JONES MK. I STEREO FM TUNER KIT
 gate Mosfir ar and Mixer front end, triple gang varicap tuning,
amic filter/ dual IC IF amp.

 Compare this spec. with tuners costing twice the price.

Mono $£ 36.40$ + VAT With ICPL Decoder $£ 40.67$ + VAT With Portus-Haywood Decoder $£ 44.20$ + VAT

STEREO MODULE TUNER KIT
A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter.

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
THD typically 0.3%
LED sig. strength and stereo indicator

PRICE: Stereo $£ 33.95$ + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful sweXAN design. PC mounting potentiometers, assembly and to minimize wiring Power 'on/off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 2dB. Headphone output. Tape In/ Out facility (for noise reduction unit, etc.). Toroidal mains transformer PRICE: £35.95 + VAT

BASIC NELSON-JONES TUNER KIT $£ 15.70$ + VAT BASIC MODULE TUNER KIT (stereo) $£ 18.50$ + VAT

PUSH BUTTON IC DECODER KIT TEREO DECODER KIT ww - o33 For further details
$£ 4.47$ +VAT PORTUS-HAYWOOD PHASE-LOCKED STE
$\mathbf{8 8 . 8 0}+$ VAT

EIGHTH NATIONAL AMATEUR RADIO AND ELECTRONICS EXHIBITION

at the GRANBY HALLS, LEICESTER on NOVEMBER 8, 9 \& 10

$£ 500$ in Voucher Prizes PLUS Free Raffle Prizes at 14.00, 15.000, 16.00 and 17.00 hours each day. OPEN THURSDAY, FRIDAY and SATURDAY, 10.00 until 18.00 hours. Admission 50p. Concessionary tickets 40 p for Clubs and Parties of 25 or more. DON'T FORGET

UNDISPUTEDLY THE FINEST SHOW IN EUROPE!!

\star Specification

MORE SCOPE FOR YOUR MONEY

 RADAT 3106C 10MHz SCOPE 5" CRTAs recommended by Practical
Wireless time base Wirele

\qquad
KRAMER \& CO
9 October PLACE, holders hill road Tel: 01-203 247. Telex 8888941 attn. K 7

Please send me

Radat 3106 C 10 MHz Scope
Please send me details of 5 Mitz + 6MHz Scopes
ves. no
Name
Address
Adress
ACCESS. VISA: BARCLAYCCABD: MASTER CHARGE

RECHARGEABLE BATTERIES

trade enquiries welcome Full range àvaiable to replace 1.5 volt dry cells and 9 voit PP type.
batteries, SAE for lists and prices. $£ 1.25$ for booklet. "Nickel baturies, SAE for lists and price
Cadium Power,"

SANDWELL PLANT LTD.
2 Union Drive Boldmer
Sutton Coldfield, West Midlands 021-354 9764 See full range at TLC, 32 Craven street, Charing Cross, Loñỗ

WW - 044 FOR FURTHER DETALIS

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive
range of equipment for processing all types of picture tubes, colour and mono. Standiard or custom built units for estab-
lished or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team. Full training
requirements
For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon, CRO2XX.
$01-6841422,01-6898741$
ww - 027 FOR FURTHER DETALLS

W-028 FOR FURTHER DETALLS

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted rom abroad require a stamp. These Service Cards are valid for six months from the date of publication
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you equire from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION
Berralia: Gordon A

 Conasd : Davis Circulatio

yuruat: Genoral Prass

ditane Stiont, PP.

 Gommany:W.E.ESartach lierstraseso 2

Amsata: Invermational Book

Mansion Ext, Madame
Coma Roor, Bombar 1
Iran: A. $\mathrm{O} \cdot \mathrm{A}, 151 \mathrm{I}$
Sorave, Tohion

 Matasis: Tom in in cinition in Mandinismu Contrinnalitidid villat
 Wollingion 2
 2mas :asium
 ain
 5umixiou switzoriland: Navillo

WIRELESS WORLD

PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

```
Enquiry Service for Professional WIRELESS WORLD Wireless World, October 1979 WW 970
Please arrange for me to receive further details of the products listed,
space provided.
    Name.
    Nemool comen
    Address.
    Telephone Number
    *)
    Position in company.
    Nature of Company/Business
    No. of employees at this establishment
    I wish to subscribe to Wireless World 
                                    ALID FOR SIX MONTHS ONLY
```


Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Wireless World Subscription Order Form Wireless World, October 1979 WW 970

UK subscription rates

1 year: $£ 9.00$
Overseas 1 year: $£ 12.00$
Please enter my subscription to Wireless World for 1 yea
I enclose remittance value
USA \& Canada subscription rates 1 year: $\$ 31.00$

Name

Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6 , Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Telephone : (03) $585-0581$

United States of America Ray Barnes, *IPC Business Press 205 East 42nd Stree New York, NY 10017-Telephone: Mr. Jack Farley Jnr., The Farley Co. Suite 1548,35 East Wacker Drive, Chicago, 1llinois 60601 - Telephone: (312) 63074

Mr. Victor A Jauch,
Elmatex Internation
P.O. Box 34607,

Los Angeles Calif. 90034 U.S.A. Telephone: (213)
Telex: $18-1059$.
Mr. Jack Mentel, The Farley Co., Suite 605 Ranna Building, Cleveland, Ohio 4415 Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida 33140 - Telephone: (305) 5327301 Mr.Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N. E., Atlanta, Georgia
30305. Telephone: (404) 2377432 30305. Telephone: (404) 2377432
Mike Loughlin, IPC Business Press, Mike Loughlin, IPC Business Press,
15055 Memorials, Ste 119 , Houston, Tex 77079 -Telephone : (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Lto Toronto 2 - Telerphone (416) 364269

Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a full XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full
bandwidth over the full screen area, trace locate and TV bandwidth over the full screen area, trace locate and
field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the eading edge of
any signal. Trigger level and slope are selected on one dual function control. 3% accuracy and still only £ 360.00^{*}.

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT

Scopex Sales,
Pixmore Avenue, Letchworth, Herts SG6 1JJ.
Tel: $(04626) 72771$ Tel: (04626) 72771.
Please send me full details of the Scopex range.
Name
Company
Address

(1)III $=\mathrm{F}=1$

IN

DEVON!

AURA SOUNDS ARE BRINGING

 WERSI ORGANS \& KITS TO THEROUGEMONT HOTEL EXETER

CONCERT FRIDAY, SEPTEMBER 28th
7.30 p.m. to 10.00 p.m

Admission Free

DEMONSTRATIONS SATURDAY, SEPTEMBER

 29th10.00 a.m. to 5.00 p.m.

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues Our new 169
battery-powered digital multimeter for use in the field or on the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with respectable . 25% DC accuracy.

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer componen years.

Is this the end for Analogue

 $2 A$ (250V) on DCA and ACA. The fuse is externally accessible for quick replacement. 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.Cost-conscious ease of maintenance กn Pterc only one calibration adjustment a year is required That adds up to a cost-of-ownership no other competitive DM can touch. For example, the 169 needs only one battery change per year at a cost of about $£ 1.50$

When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point. No analogue meter or DMM can match the pricel performance of the new 169 . If costs $£ 99$ (plus VAT For information on the 169 or any Reithley DMM call (0734) 861287
Telex: 847047

Ex stock

WW - 121 FOR FURTHER DETAIS

KEITHLEY
Koithhey Instruments Ltd.

1. Boutton Road
GB-Reading
Be

GB-Reading. Berkshire RG2 ONL
UNITED KINGOOM
10734) 861287 Telex: (8511847047

VFL 1910 Verical front loading Super Hi-fi deck, as as sed in our new Linsley-Hood
Cassette Recorder 2. $£ 31.09+$ VAT. Set of Knobs $£ 1.46+$ VAT. - IENCO CASSETTE MECHANISMS We hold stocks of a range of Lenco tape transports for all uses, we can also supply

Alarge range of cassette heads for domesticic industrial and audio visual purposes is

AL UK ODER ARE PSST FREE
Ploase send 9×4 AEE for Iists giving fuller details and price breakdowns.
Penylan Mill, Oswestry, Salop

MBrocomputer rraining course		
	- A uniquely detailed 800-PAGE - A FULLY ASSEMBLED and TEST - A COMPLETE SYSTEM with key Cassette Interface and Power Supply - Based on the 8080A MICROPROCE -Designed to TEACH microcom hardware from fundamentals through - Easily EXPANDABLE using the ${ }_{536}$ Training System Hardware of CO 536A -THE S-100 BUS COMPATIBILITY S-100 Bus Interconnect Board) per CRT's, printers, floppy disks, and oth	WORKBOOK/TEXT ED microcomputer board, Display, Audio SSOR puter software and advanced concepts Advanced interface MPANION COURSE (through our optional mits easy addition of her peripherals.
INTEGRATED COMPUTER SSTEMS PUBLISHING CO.	FOR FREE CATALOGUE LEATHERHEAD (03723) 79211	Please write or call: ICSP - U.K. Pebblecoombe, Tadworth Surrey KT20 7PA England

MiniM

LET US TURN YOUR HI-FI ON with our DIGITAL TIMER
The Minim Digital Timer is an accurate 24 hour clock, with the

facility to switch mains operated equipment ON and OFF at | independently pre-set times it can switch appliances up to 1.5 kW |
| :--- |
| - the biggest hi-fi. TV, heaters, lights, etc. It is wes ap | the biggest h i-fi, , TV, heaters, lights, etc. It is very easy to set the attractive teak veneered cabinet size 7 in. $\times 5$ in. $\times 2$ in

approximately.
approximately. Price $£ \mathbf{3 9 . 9 5}$
Please send me further details of your Digital Timer and other
Name
Address

Minim Audio Limiod, Lent hise Road, Burnham, Slough SL1 TNY. Tol: Burnham 6372

122
122

CHILTMMEAㄴTロ

NORWOOD ROAD, READING TELEPHONE NO. READING 669656
(2nd turring left past Reading Technical College in King's Road then first right - look on right for door with "Spooked Wheel")

MAIL ORDER PROTECTION

 SCHEME (Limited Liability)

\qquad

SPECIAL OFFER!	
EXTEL	TELETYPE
Model AF	Model ASR 33
MATRIX	featuring:-
PRINTERS	\star * tape reader/ punch
	$\star 20 \mathrm{~mA} \mathrm{current} \mathrm{loop} \mathrm{interface}$
	${ }_{\star}^{\star}$ treaestand and transformer
\# impact printing \star Baudot code suitable for either teleprinter or microprocessor applications \star fully tested $\mathbf{£ 1 5 0 . 0 0}$ plus VAT	(also available unrefurbished but guaranteed complete at £285.00 plus VAT).
COMPUTER APPRECIATION, 86 High Street, B	ey, Redhill, Surrey RH1 4PA. Tel: Godstone (088

WIRELESS WORLD, OCTOBER 1979
©U.K. RETURN OF POST M̄AIL ÖRDER SERVICEE, ALSO WORLDWIDE EXPORT SERVIC̄E

PROFESSIONAL Vienulidia EXHIBITION

A DEMONSTRATION OF EQUIPMENT AND SERVICES FOR THOSE PROFESSIONALLY ENGAGED IN TELETEXT AND VIEWDATA

There is enormous scope for the
use of viewdata as a private internal communication system for large and small businesses and organisations alike.

- The Professional Viewdata Exhibition is planned to bring together information providers, those interested in the use of teletext and viewdata for private use, and the providers of the necessary hardware and services.
- It shows what equipment is available, what it can do and who supplies it, and
how it helps solve problems of information storage, retrieval and dissemination
- An exclusive event for professionals, the Exhibition is presented by "Viewdata \& TV User" magazine with the support of the Association of Viewdata Information Providers, the Post Office and the Department of Industry.
- It is held concurrently with the AVIP members' November conference, also at the West Centre Hotel.

IIf you are a Prestel Subscriber, key $* 45606$ \# for more details)

West Centre Hotel, Lillie Road, Fulham, London, November 7 \& 8

YOUR LAST CHANCE

to obtain Wireless World
 World circuit cards, even though the companion bound volumes Circuit Designs 1 \& 2* are out of print. Fill the gaps in your circuit files with these sets of $5 \times 8 \mathrm{in}$. ($127 \times 204 \mathrm{~mm}$) cards in plastic wallets - and at 1976 prices! These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

The two out-of-print volumes contained sets 1 to 10 and 11 to 20 of Circards.

Micropower circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital counters 15 Pulse
modulators 16 Current differencing amplifiers-signal processing 17 Current differencing amplifiers-signal generation 18 Current differencing amplifiers measurement and detection 19 Monost$\begin{array}{lll}\text { able circuits } 20 \text { Transistor pairs } & 21 \\ \text { Voltage-to-frequency converters } & 22\end{array}$ Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators $\begin{array}{lll}25 & \text { RC oscillators - } 1 & 26 \\ -2 & 27 \text { Linear oscillators }\end{array}$ $\begin{array}{lll}-2 & 29 \text { Analogue multipliers } \quad 30 \mathrm{Rms} / \\ -2 & 38\end{array}$ 32-Tränsistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - $\quad 35$ Analogue gate applications

| 1 Basic active filters 2 Switching circuits, comparators and |
| :--- | $\begin{array}{lll}\text { Schmitts } & 3 \text { Waveform generators } & 4 \mathrm{AC} \text { measurements } \\ \text { Audio circuits } & 6 \text { Constant current circuits } & 7 \text { Power }\end{array}$ amplifers 9 Optoelectronics 10 To: General Sales Department, IPC Electrical-Electronic Press Ltd., Room CP34, Dorset House, Stamford Street, London SE1 9LU.

Please send me the following sets of Circards:
$£ 2$ each, $£ 18$ for ten, inclusive
I enclose cheque/money order for $£$
Make cheques payable to IPC Business Press Ltd.
Name
Address

Company registered in England. Registered address, Dorset House,
Stapford Street. SE1 9 IU. England. Registered Number 677128

WW -920 FOR FURTHER DETA

ROHDE \& SCHWARZ TV Demodulator. AMF. $55-90 \mathrm{MHz}$ Selective UHF V/Meter. Bands 4 \& 5 . USVF UHF Sig. Gen type SDR 0.3 -1 GHz. $£ 750$. Polyskop SWOB I. $£ 450$. Modulator/Demodulator BN17950/2 Video Test Signal Generator type SPF UHF Sig. Gen. type SCR. $1-1.9 \mathrm{GHz}$.	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 AIRMEC Display oscilloscope. 4 beam. AIRMEC $314 A$ Voltmeter. 300 mV (FSD)- 300 V BRANDENBURG EHT Generator. 50 KV 1mA BRANDENBURG EHT Generator. 50 KV . 1 mA . DERRITRON 1 KW Power Amplifier wit vibration GAUMONT KALEE Flutter Meter GERTSCH Frequency Meter and Dev Meter. $20-1000 \mathrm{MHz}$ £350. HEWLETT PACKARD 302A Wave Analyser HEWLETT PACKARD 695A Sweep Oscillator £350. BOONTON Model 80 Sig. Gen. 2-400MHz £95. RACAL type 801 R .100 mHz Digital Frequency Counter TELETYPE KSR. One remaining. SOLARTRON LM1420.2. DVM. MUIRHEAD MUIRHEAD type K-1 34-A Wave Analyser. Portable. RADIOMETER AFM/1. Dev/Mod Meter. 3.5-320MHz. £185. WEINSHEL Power supply Modulator type MO3. BRUEL \& KJOER type 1504 Deviation Bridge BRUEL \& KJOER Vibration equipment 1018. BRUEL \& KJOER Frequency analyser 2105 BRUEL \& KJOER Microphone amplifier 2603 £195. BRUEL \& KJOER Type 3301 Automatic frequency response recorder 200 Hz . $£ 750$. MUIRHEAD-PAMETR TEKTRONIX 555 scope with plug-ins types CA (2 off), 21, 22 TEKTRONIX 515 A Oscilloscope TEKTRONIX 545 main frames. $£ 210$. Choice of plug-in units TEKTRONIX 585A oscilloscope with ' 82 ' P.I. DC-80MHz NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months' guarantee. Calibration and welcome. PLEASE ADD 15% VAT TO ALL PRICES.	DC POWER SUPPLIES -APT 10459/8 12-14V. 5 Amps. $£ 25 .(+£ 1$. pp). APT $104.59 / 8.24 \mathrm{~V}$. $5 \mathrm{Amps}$. . 25. . $+\mathcal{E 1}$.pp pl. APT Your voitage requirements from 6 V to 36 V . @ 5 Amps. . 25 . . + EL1.pp). \& Neg 12V. at 1 A and 0.4 A resp. Dims $9 \times 4 \times 5$ in. E 10 . (+E1.pp). Brand new with book. 5V.4A.
MARCONI TF2360R TV Transmitter Sideband Analyser TM6936R UHF Converter for above TF1 101 RC oscillators $£ 65$. TF 109920 MH TF1041B Valve Voltmeter $\mathbf{8} 65$ TF890A/1 RF Test Set. $£ 395$ TF1400 Pulse Generator $\mathbf{£ 6 5}$. TF 1066 AM/FM Signal Generator $\mathbf{£ 5 5 0}$. TF $801 \mathrm{~B} / 3 \mathrm{~S}$ Signal Generator $£ 175$.		FARNELL. Current limited. Dimensions $7 \times 5 \times 4$ in. 5 Volts ${ }^{5}$ Amps. $13-17$ Volts $@ 2$ Amps. 30 Vots @ 1 Amp. Price only E 15 . ($+\varepsilon 1$ 1.pp). All the above power supoly units are $230 \mathrm{~V} . \mathrm{AC}$ input (except Lambda type) and are stabilised and regulated guaranteed in first class order throughout. As with all our equipment, there is a money back guarantee
BECKMAN TURNS COUNTER DIALS Miniature type (22.mm diam.). Counting up to 15 turn "Heliots." Brand new with mounting instructions. Only $£ 2.50$ aach. Wandel 8 Gotterman Equipment Level Meter 0.2-1600KHz Level Oscillator $0.2-1600 \mathrm{KHz}$ Level Transmitter $0.3-1350 \mathrm{KHz}$ Carrier Frequency Level Meter		AIRMEC $2103-300 \mathrm{MHz}$. AM /FM. RACAL $4093-600 \mathrm{MHz}$. AM / FM.
ADVANCE CONSTANT VOLTAGE TRANSFORMERS Input $190-260 \mathrm{~V}$ AC. Output constant 220 Volts. 250W. $£ 25$. (£2 carriage)		quality, quiet running fans, specially designed or the cooling of all types of electronic equipWatts. The list price of these is over $£ 10$ each. Also 230 V . AC available 15 V . $\mathbf{£ 4 . 5 0}$
PYE RESISTANCE BOXES 5 decade resistance boxes measuring from 11.111 ohm to 0.001 ohm		-
LABORATORY OVENS. - Gallenkamp, 3 cu f. E145. Also Morgan Grundy 1 cu. ft. £55. 20-WAY JACK SOCKET STRIPS 3 type with two normally closed contacts. $£ 2.50$ each (+25 p pp). Type 316 three pole plugs for above - 20p ea. (pp free).		Finger guards for above - 50p each. Also small type Papst fans as above measuring $8 \times 8 \times 3.8 \mathrm{cms} .26$ cu. tt $/ \mathrm{min}$. 110 V only $£ 4.00$ (PP 25p). RS price for all these fans are now around $£ 12.50$ each!!!

ORGAN and PIANO KEYBOARDS

Price inc. VAT	$P \& P$
£32.20	$£ 2.75$
£34.50	$£ 2.75$
£34.50	$£ 2.75$
$\mathbf{£ 3 6 . 8 0}$	$£ 3.00$

DALSTON ELECTRONICS 40a Dalston Lane, Dalston Junction
London, E8 2AZ Tel: 01-249 5624

COMPUTER APPRECIATION
86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel. Godstone (0883) 843221

FOTOLAK

Positive light sensitive aerosol lacquer
 required circuit on now sensitized surface. Expose to daylight, develop and etch
Any uniber of exat copies can of tourse be made from one master. Widely used in musily or prototype work. Fotolak
Develoorer Developer
Feric Chloride

 \section*{lass.}

 Approx. 2.00 mm thick ss. ftt.
Appox. 1.00 mm thick saft.
A Cear Aceate Sheet for
G. F. MILWARD ELECTRONIC COMPONENTS LIMITED

find out about

the NEW

 SEMICONINTERNATIDNAL semiconductor INDEXES
Accepted as the finest books of their kind. Worldwide usage for testing and primary selection purposes. wide range of discrete and integrated devices. Over 25,000 entries in each volume including USA, European and Japanese sources. Each single line entry includes references from which terminations, possible substitutes and alternative manufacturers may be obtained.
The loose-leaf binder form allows easy updating by our subscriber up-date service - free for the first year

7, King's Parade, King's Road, FLEET. Hants. GU13 9AB. UK. Telephone: 025.14.28526 AGENTS IN MANY COUNTRIES
WW - O50 FOR FURTHER DETALLS

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz requency counter plus option of $0-1.5$
transceiving application $1.8-30 \mathrm{MHz}$.

RADIO SHACK LTD

 For Communic

Reake \pm SALES \pm SERVICE
RADIO SHACK LTD
188 BROADHURST GARDENS, LONDON NW6 3A
Cables: Radio. Shack, London, NWE. Tolex: 2371 Is

WW - 052 FOR FURTHER DETAILS

日-PREPAK

NICKEL-CADMIUM BATTERIES AT LESS THAN

Type	Copacity	Voltage			inc. 15\% VAT
NC20	20	1.24	20	24.8×7.4	45p
NC28	280	1.24	28	x	60 p

NC28	280	1.24	28	34.4×5.3	$\mathbf{6 0 p}$							
NC50	500	1.24	50	34.3×9.5	$\mathbf{8 0 p}$		NC50	500	1.24	50	34.3×9.5	$80 p$
:---:	:---:	:---:	:---:	:---:	:---:							
NC90	900	1.24	90	50.5×8.3	$\mathbf{£ 1 . 2 0}$		NC175	1750	1.24	175	50.7×14.9	$£ 1.75$
:---	:---	:---	:---	:---	:---							

- High capacity ior very sman size.
- Wide iemporatiris ope

TOO ORDER
Plasese send cas

BI-PRE-PAK LTD.

HV RRADLE SMOOTHING GAPS

SEMICONDUCTOR 'GRAB BAGS'
 MUFFIN FINS
 ELECTRONIC
COMPONENTS
Q EOUIPMENT
DISCOUNT

 PLEASEADD P + P $£ 1.25$
ISOLATID 2400 4 AMP 10 AM
SOLID STATE RELAYS

MPU EXPERIMENTORS POWER SUPPLY

wW - 116 FOR FURTHER DETAILS

NEW from NEWTRONICS ‘EXPLORER 85’ Microcomputer Kit Low cost with On Board S-100 expansion at $£ 295+$ VAT	The 'EXPLORER 85 ' is inexpensive board plus potential for 'infinite' expansion * Uses New Fast INTEL 8085 cpu, 100\% compatible with 8080A software but 50% faster than Powertu $\star 4 \mathrm{~K}$ user RAM expandable to 64 K . * Provision for 8K PROM or EPROM. \star Buffered and decoded S100 expansion on board (up to 6 S 100 boards). * Cassette interface (with motor control and cassette file structure) RS232; 20 mal loop; 48 bit and 16 bit I/O ports. \star Programmable 14 bit binary * Separate ASC11/Video Terminal features: a full 128-character set upper /ower case, full cursor con-- trol, Greek symbols for Maths, 75 ohm video output convertible to baudot output, selectable baud rate, RS 232 or 20 ma loop, $1 / 0$. 64 or 32 characters by 16 line (monitor or TV).	
	Dealer enquiries welco PAYMENT BY: Cheque / Access / Barclaycard, etc. FO Access/Barclaycard No. Signature Print Name Address	For full details send S.A.E. HONE ORDERS CALL 01-739 1582 Exp. Date $\begin{array}{ll}\text { div of H.L. Audio Ltd. } & \text { Dept. P/C } \\ \text { sland Road, London, E2 8BY } & \text { Tel: 01-739 } 1582\end{array}$

Prive pat pap
 Uses New Fast INTEL 8085 cpu
100% compatible with 8080 A
software but software bu
8080 A cpu.

* Powerful 2 K monitor.
- Provision for 8 K PROM or EPROM.
- Buffered and decoded S100 ex-
pansion on board (up to 6 S 100 pansion
boards).

Cassette interface (with motor con-
rol and cassette file structure) roo and cassette file structure)
RS232; 20 ma loop; 48 bit and 16
bit $1 / 10$ ports. bit $1 / O$ ports.

Programmable

- Sounter/timer. 11 /Video Terminal features: a full 128 -character set
upper llower case, fult cursor con-
trol Greak symbols for rol, Greek symbols for Maths, 75
ohm video output convertible to
baudot output sit baudot output, selectable baud
rate, RS 232 or 20 ma loop, $1 / 10$
64 or 32 characters by 16 lina
 E32.80 \quad E2.00

 $\begin{array}{ll}\text { E5.00 } & \text { Froe } \\ 33.50 & \varepsilon 2.00\end{array}$
 CABINET SUPLY IN STEEL
 $5-10016 \mathrm{~K}$ RAM EXPAND.

 portable tool for anyone who needs to communicate with GR ELECTRONICS LTD.
Fairoak House, Church Road, Newport, Gwent NPT TEJ. U.K
elephone: Newport (0633) 67426 Telex: 28604 Ref. 179

Build any Project-Fast and Easy

It's the new deal for project builders from Lektrokit! A complete new range of breadboarding and testing devices. At prices anyone can afford or any project anyone could want to build- from one-chip simplicity to l,000-chip complexity.
components in and pull them, too. You simply push no chance of heat damage. You can make design changes
instantly, keeping full leads on components.
In fact, with Lektrokit, you can build a project as fast as you used to sketch a layout. And a lot more easily.

LEKTROKIT

completes the circuit

[^2]WW - 085 FOR FURTHER DETALLS

Advertisements accepted up to 12 noon Friday, September 28th for November issue, subject to space being
available.

DISPLAYED APPoINTMENTS VACANT: 11.000 per single col. centimetre (min. 3 cm). LINE advertisements (run on): 11.50 per line, minimum three lines.
BOX NUMIBERS: 70 p extra. (Replies should be addressed to the Box Number in the dvertisement. c/o Wireless World Dorset House, Stamford Street London SE1 9LU,

Electronic Engineers

The Government Communications Centre at Milton Keynes now requires several of the above qualified staff is often novel, always challenging and requiring a high level of dedication and application to the task. The fields of work are increasingly offering new opportunities for career development and experience in VHF, HF general Minimum qualification needed is HNC.
Salaries ranging up to $£ 6737$ per annum depending on qualifications and experience.
We are situated close to Milton Keynes, a fast growing town with many modern entertainment, shopping and travelling routes and reasonably priced beveral main Please fficer. HM Cly for an application form to the Recruitment Hanslope Park, Hanslope, Milton Keynes, MK19 7BH.

Make Hanslope Park your next stop

Hanslope Park - is vital to your career.

ROHDE\&SCHWARZ

4,500 employeess inemationally repres
SENIOR TEST AND CALIBRATION ENGINEERS
With a background in RF and mimeroweves. experienced in ánalogue, digital
techniiques, logic and microprocesssor controled
TEST \& CALIBRATION ENGINEERS

$$
\begin{aligned}
& \star \text { Non-contribuorry pension scheme } \star \text { Subsidise } \\
& \text { Please write orpone to } \\
& \text { Mr. . . Fres (Technical Manager) extension } 43 \text {. }
\end{aligned}
$$

aveley

electric आルת

Service Engineers
Glasgow, Aberdeen
Tilbury and Cardiff
International Marine Radio Co . is engaged
in the manufacture of high quality marine in the manufacture of
manication equipment. We have vacancies for Marine Radio Service Engineers in our Glas
gow Aberdeen, Tilbury and Cardiff Depot's. The work will be concerned ard with installation
and service of communication equipment on and service of communication equipment on
board commercia vessels of all types. Ideal candidates, male or female, will
have had at least three years sea experience have had at least three years sea experience
as a Radio/Electronics Officer, A company vehicle is provided for business and personal
use. use. for further details on these positions
please contact: Jonathan Smith, International Marine Radio. Co. Lta. Intello House, 302
Commonside East, Mitcham CR4 1YT, Surrey. Commonside East
-
MRC An Associate Company An Associate Company

Animprint for the future.

The development of solid state technology undoubtedly marks an
important stage in man's history. At Honeywell we are committed
to its extension into all areas of potential benefit. The end of 1979 will see the opening of our new facility, devoted exclusively to examining the
applicational possibilities within the applicationa possibiinties within the
European market, particularly in the areas of insirument and control.
Based at Newhouse, Lanarkshire,
close to our design and development cose to our design and development
facility, the Solid State Applications Centre therefore represents a major investment, not only for Honeywell,
but also for Scotland and the UK as a whole. Our investment amounts to
more than f1 million and will provide more than $£ 1$ million and will pro
advanced facilities including computer-aided design.
The Centre's small, highly
specialised team will work in close so-operation with the marketing function and the research group in Minneapolis, USA, in investigatio
and analysis of user-oriented problems, design specification, through prototype development and
presentation to the client. In the longer term, the aim of their work will be to enlarge the product ran Commercial awareness - of cost practical and time factorss - witl be as
important in the engineer as the important in the engineer as the
technical capacity to contribute t techical capacity to contribute to relevant R\&D experience is
necessary; however, since the work is necesary,
of aery specialist thature, extensive
training will be available in USA.

Project Engineers: These are senior appointments, with responsibility for individual
development projects within defined technical and financicial goals. Applicants must be fully qualified proven ability to work with multidiscipline engineering teams and with
considerable professional experience considerable professional experience
in at teast tone of the following: microin at Least one of the following: mic microprocessor software engineering recognition; real-time comput recognotion; real-time computer
control techniques; advanced electromechanical instrument designs.
The work will entail spending periods of up to six months in USA to assist in technology transfer.
Design Engineers: Electranic design engineers with
some specific experience in control engineering and instrument contrign are
needed for a aviety of advanced needed for a
design work.
IC
Engineers:
SOLID STATE
APPLICATIONS Qualified integrated circuit designers with years' minimum experience and at least one
successfully completed design cyc are required to work on specialist solid state designs involving both analog and digital techniques.
Developmentswill also include thick
and thin film circuit techniques.

The salary and benefits packages ttached to these posts will be be attached to to the hostshest calibe men and women, and career
prospects in this stimulating and novative environment are exceptional.
To apply, please contact:
David Miller, Management David Miller, Management HONEYWELL LIMITED, MOTHERWELL Lanarkshire MLL'5SB Tel. Holytown 732100 Extension 627

Appointments

Seek failure and find success

 c. $£ 7,000$Correct component choice is a cornerstone of Rank Xerox design philosophy. It has to be right to ensure our continuing world wide commercial success. We seek a special type of engineer, who has not only a strong background and training in electronics, but also an enquiring mind and the necessary acumen to
interact with designers, production engineers, major component suppliers and interact with designers, production engineers, major component stappliters and ponents, their resourcing, negotiation, overall test, modification and application. We have invested heavily in ATE, and so some software knowledge would be useful. Male or female, you should have at least HNC level qualifications and electronics experience in an industrial or R \& D environment, preferably in component manuexperience in an industrial or R \& D environment, preferably
facture. Based at our Welwyn Garden City headquarters, you will occasionally be
required to travel in both Europe and USA. Thorough specialised training will be required to travel in both Europe and USA. Thorough specialised training will be
provided, and there are excellent prospects for rapid career advancement within this stimulating world wide meritocracy.

experience

Salaries circa $£ 7,000$ are offered. Our benefits package is superb and includes a generous and all embracing re-location package to enable those living outside the area tomove tothis desirable location withine easy reach of London. For an application
form and company information package please telephone Jim Collingham on 0908312870 or write to him at Rank Xerox Engineering Group, 30 Church Street, Welwyn, Herts. AL6 9LX.

Foreign and Commonwealth Office

TELECOMMUNICATIONS OFFICERS

£4575-£6100 (from 1.1.80)
.at Hanslope Park, Milton Keynes, for work on the installation maintenance and operation of HF commukication equipment,
VHF, UHF and microwave links and associated test equipment, Candidates should normally have ONC in Engineering (with a pass Candidates should normally have ONC in Engineering (with a pass
in lectrical Engineering A ') or Applied Physics, or an equivelen
qualificication, and have served an apprenticeship or had equivalen qualiination, and have seveple who have had suitable training and training, but ex-Service people who have had suitable training and
at least 3 years' appropriate service (as Staft Sergeant or equi-
valent) will also be considered. valent) will also be considered Salary, starting between $£ 3795$ and $£ 5015$ (according to age),
rises to $£ 5415$. (to becone $£ 4750-£ 6100$ from 11.1 .80).
Promotion prospects. Non-contributory pension scheme. For further details and an application form (to be returned by 11
October 1799) wite to Civi) Service Commission, Alencon Link October 197) write to Civil Service Commission, Alencon Link
Basigntake. Hants RG21 1B or telephone Basingstoke ((20256)
68551 (answering service operates outside office hours). Please 6 asingstoke, answering service operates outside office hours). Please
quote ref: $\mathrm{T} / 5221$.
(9707)

N1 REQUIRED: SENIOR ENGINEER

Salary in accordance with ACTT national agreement plus loca The engineer required is to join a specialist team engaged in sophisticated video tape post production in the heart of
he dutie
The duties will be editing on U-matic, and the operation of all
VTR formats. The competent in all VTR operations. It is essential that the candidate for this job be familiar with facilities operations and accustomed to dealing with clients.
This job represents a unique opportunity for a VTR engineer or editor with at least two
Broadcast Standard TV.

Please contact Barry Stevens on: 01-439 824
8, Poland Street,London, WIV 3DG

Sony Broadcast means more career opportunities! sold TV equipment and systems to more

 negotiating for additional commodation at Basingstoke and we plan to double our staff yet again during the next 12 months. This includes the opening of branches in Germany Scandinavia, Italy and the Middle East, as well as expanding our facilities in Basingstoke itself. In the meantime, we have the following immediate vacancies:U.K. Sales Manager

Salary negotiable eround E10K + car)
We're looking for a young, qualified "eage We eaver" who really knows, hualified "eager-
benions
when it comes to vide tane (had oniter when it comes to video tape (and prefera TV cameras, digits and auuio as well.).
Someone who enioys meeting people. Soosth mind a a bitions of traeel, mostlty in the UK,
dond desirably has some operational
and and desirably has some operainenal oduction
experience in TV studios or post-prou
Previous sales experience useful but Previous sales experience useful, but not
essential Drive, self-motivation, initiative, meticulous attention to detail and
perseverance will bring its own rewar perseeverance will bring its own rewards
Usual fringe benefitis, nclucuding free life
assurance and free medical inssial

Senior Proposals Engineer
Seniar Proposials engineer $57-8.5 \mathrm{~K}$
depending upon qualuntifations and
Qualif cations similar to above but need not
be quite so extrovert travel so much or have
such
such hollow legs! Technically, we want a
good all
sood all-rounder, preferably with Studio and
OB planning experience who can ensure that what we proposee eto cusco who cans ensuly meat tha
their requirements and that we have not oeritequirements and that we have not
on sthort, making parts from our quotations
In system work. Some
 with "Invitation to Tender" sman print would
be an advantage, but notessential, as would
a knowledge of languages. Some a knowledgit of flanguages. Some
opportunties for forign travel, mostly in
Europe Atrica and opportunities tor fore
Europe, Africa and the
Proposals Engineer
(Salary around $\begin{aligned} & \text { E6-7.5K depending upon } \\ & \text { qualifications and experience) }\end{aligned}$ qualifications and experience)
Assistant to the Sexior Proposals Enginee Assistant to the Serirco of this kindof of
Need not have expering
work, but must the aseen as mustard and Need hout hust be as keen as mustard and
will, but mo tearn. Would dideall suit young
wiling ter engineering Graduate, preferably y yith a
couplo of ears of industrial experience who
is interested in developing his/her career on is interested in developing his/her career on
the commercial side. Traning provided if
necessary. Travel opportunities as above.

SONY

Broadcast
Assistant Product Managers
Starting salaries circa ETK) Starting salaries circa ETK $^{\prime}$) graduates eager to be trained in depth in Iheir chosen product and the needs of the
25 line markets, or (b) engineers or 6echine markets, or al engdy widely
technicianswho are already
experienced with cameras TBECS, ${ }^{\prime \prime}$ Helica
Scan VTR's or High Band U-Matic VTRs experienced with cameras, TBC's, ${ }^{1 " \text { Helic }}$
Scan VTR'sor High Band U-Matic VTRs
(BVU) coupled with an existing (BVUU) coupled with an existing
comprehensive knowlege t the needs
the EAME market including the strengths he EAM E market including the strength products. The various Product developme
groups in Sony Broadcast rely very heavily grops in Sony Broadcast rely very heavily Product Managers in the field and these
obs for those who want to become top experts in the eir chosens specialitic coupled
with extensive travel in Europe, Atrica and
 within the first 12 months and thereatter at
regular intervals. Four vacancies exist, on egular intervals. Four vacancies exist, on
for each of the product categories above.
Assisiant Marketing Promotions Manager Sis
Lis job involves assisting the Marketing
Promotions Manager in Promotions Manager in all aspects of Company promotion (international
Exhibitions, preparation of techical sales
iterature, press liaison, advertising
you terature. Press liaison, adverising -you
name it). Atechnical background coupled
withe an ability to write in an effective style are with an ability to write in an effective Styly a
ppirarary $\begin{aligned} & \text { equirements. A knowledgos } \\ & \text { Broad the }\end{aligned}$
Broast Equipment industry is desirable.

Service Supervisor

Service Supervisor
(Salary around $\mathbb{7}-8 K$ depending upon
Qualifications and qualifications and experience)
Here we are looking for a 100% reliable Here we are looking for a 100% reliab
person with some knowledge of administration to be responsisile for the day
oo day running of our Service Department, to day running of our Service Department.
handlling all Sony Broadcast products.
Broadcast experience is desirable but no Broadcast experience is desirable but not
essential if therrive well ualified and
esper essential if otherwise well qualified
experienced in this kind of work.
Test Engineers/Quality Assurance Teschnnicions
(Salaries £5K upwards)
(Salaries $£ 5$ K upwards)
We anticipate having a number of vacancies
in our Quality Assurance team during the in our Quality Assurance team during the next few months as we expand into new
premises. HNC , HND or $\mathrm{C} \& \mathrm{G}$ Finals in Telecoms desirable but experience of
working on sonhisticated Broadcast working on siophisticated Broadcast
equipment is more important. Salaries
according to qualifications and experience. Al the above posts carry fringe benefits PLUS the advantages of joining a young and already
successful company at a relatively early stage. An excellent pensions scheme, a staft purchase scheme, rree life assurance and free private health insurance are avaiilable to all
employees after an initial employees atter an initial qualifying period. Al posist carlocation expenses is given in approve
working days) paid holiday per year. Assistance with relo
circumstances (is hol Circumstances (usually restricted to the
salaries individually reviewed each year.

Write in strict contidence to the Personnel Manager giving full details of qualifications,
 Sony Broadcast Ltd.

City Wall House
Basing View, Basingstoke Hampshire RG21 2LA Great Britain

Appointments

TEST EQUIPMENT ENGINEERS

RADIO TECHNICIANS

 Your iob ewove sa mephony.

 birad tort and widen your
whatever the tuture binins

SCOTTISH HOME AND HEALTH DEPARTMENT
 WIRELESS TECHNICIAN

Applications are invited for two posts of Wireless Apphician in the Scottish Home and Health Depart-
Technic ment.
LOCATION. The posts are in Inverness.
QUALIFICATIONS: Candidates must hold an ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London nstitute
Certificate in an appropriate subject or a qualification of a higher or equivalent standard.
EXPERIENCE. 3 years appropriate experience.
STARTING SALARY: $£ 3,900$, scale maximum $£ 5,530$. Applicants should have, sound theoretical and practical Applicants should haversour
knowiedge of Radio Engineering and Radio Communications Equipment in HF , $V H F$ and UHF bands. The
work involves installation and maintenance of equipwork involves installation and maintenance of equip-
ment located at considerable distance from headment located at considerable distance from head-
quarters. A clean current driving licence and ability to quarters. A clean current driving ilescence and abilit.
drive private and commercial vehicles are essential.

Appointments are unestablished initially but there are prospects of established (i.e. permanent) appointments after 1 year's satisfactory service
Application forms and further information are obtainable Applicalitish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN (quote Ref.
PM(PTS) $2 / 8 / 79$) (0315568400 ext 4317 or 5028). Closing date for receipt of completed application forms is 25 October 1979

COMMUNICATIONS ENGINEERS

DESIGN ENGINEERS

ELEPHONE INSIIE P PLANT - Small exchanges . Inging $100 \cdot 15.000$ ines

 IINPMC
MANAGEMENT SERVICES LIMITED
5, Eas Parade, Harrogate, North Morkshite HG1 5 LF.

$$
\begin{aligned}
& \text { Are you seeking an opportunity to work on } \\
& \text { sophisticated test gear employing the latest analogue } \\
& \text { and digital techniques? }
\end{aligned} \begin{aligned}
& \text { environment at our Engineering Centre at } \\
& \text { Chessington, Surrey. We have vacancies at senior } \\
& \text { and intermediate levels offering opportunities for } \\
& \text { career advancement. }
\end{aligned}
$$

TEST/QUALITY ASSURANCE ENGINEERS

 evel wanted to work on our range of advanced broadcast
television studio products including colour and monochrome
lelevision studi elevision studio cameras.
Applicants should have an up to date knowledge of diital
and linear circuit techniques gained from experience working on television studio equipment, radar equipment or similar sophisticated products, and qualified to HND, HNC or
Employment benefits include excellent salary, generous
holidays, free life and health insurance, pension scheme, staff restaurant and relocation expenses
Please apply for further detais and application forms to Jean
Smith at the address given below,

 Advanced / Aminn in
 Broadcasting Equipment

- $1 \begin{aligned} & \text { Link Electronics Limited, } \\ & \text { North Way, Andover, } \\ & \text { Hants, sp10 5A }\end{aligned}$

ELECTRONICS Telephone: (0264) 61345

THAMES TELEVISION LTD.

TECHNICAL AND

OPERATIONAL TRAINING

Thames Television will be running its Technical Training
Scheme beginning November 1979. The course will be of 9 months duration and traineeships will be available in the tollowing areas:

1. Technicians
2. Technicians covering VTR, Telecine, and Vision Control
3. Engineering, covering planning, design and installation
4. Television Camera Operations
5. Fillev covering Camera, Sound, Editing
and 4 months specialist training and will take place at the Training Centre, Teddington, with addititonal expereience
gained on attachment at each of the Complen gained on attachment at each of the Company Sites.
$3-9$ monny during training will be $1-3$ months $£ 3,500$ pa. $3-9$ months $£ 3,800$ pa.
Sccessfll Tranees will then be absorbed into operational
departments and go on to a salary structure aplicall to Successtul Trainees will then be absorbed into operationa
deparments and go on to a salary structure applicable to
the grade. the grade.
Candidats should preferably be $20-30$ years of age and
have academic qualifications, specialist training or experience have academic qualifications, specialist training or experienc
relevant to their chosen area relevant to their chosen area.
For an application ofran and duld details please write to
Pat Evans. Staft Relations Department, Thames Television
 Limited. Teddington LOC
areas of preference.

Appointments ...

BRUNEL UNIVERSITY DEPARTMENT OF EDUCATION GRADE 4 ELECTRONICS/ LABORATORY TECHNICIAN We are looking for a technician (male or female) to be responsible, under the Chief Technician, for the day-to-day running of a combined Physics/ Chemistry laboratory and assist in an Audio/Visual Teaching laboratory. maintenance of laboratory equipment, as well as audio and video This involves working in close cooperation with both the academic and other technical staff as well as postgraduate students. either an ONC or City and Guilds in end electronics (or equivalent), and 3-5 Day release may be given to study for 21 days' annual leave plus one week at both Christmas and Easter. There facilities at hand. sports and social Salary within the scale $£ 3,222$ - $£ 3,708$ (under review) plus $£ 275$ London Weighting Establishmpitication form to the University, Uxbridge, Middlesex UB8 3PH, or telephone Uxbridge 37188 extension 49.

Middlesex.
For the higher level posts (Central London
and Stanmore), candidates (aged at least 25)
and Stanmore), candidates (aged at least 25)
must have had a minimum of 7 years' skilled

Radio Technology and the Future

TELECOMMUNICATIONS OPPORTUNITIES

The Home Oftice Directorate of Racio Tech-
nology is is responsible tort the technical aspects Tologiver responsible fort the technical aspects
of planning, manasement and regulation of fequency, bands allomeated to the teyatoon bood iting,f fixed. marit
space services.
The work includes preparing specitications
and giving typeapproval of equipment for
 munications servicics, applying computer techniques to freauency assignment, deve.
loping equipment tor the detection, Ication
 giving techical advice on engineering
aspectis of ticensing radio services and in onnection with the international radio monitoring service.

\qquad
HOME
OFFICE

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

JJB ELECTROTECHNIC PERSONNEL SERVICES,
12 Mount Ephraim
Kent. TN4 8AS.
Tel: 089239388 TJB

International Service Engineers

Fly the Fiag
 with Crosfield Electronics, a worldwide

market leader who have achieved success in the graphics arts and printing industries, with over 80% of our products going for export. As an

International

Service Engineer

up to $£ 7500$ + benefits

you'll be part of our growing service support team which provides 'on the spot' service for ou equipment, including some installation work complex challenging, problem-solving role on therefore, be very muvipment and you will organisation. Travel will be at a moment's notice to the first world industrialised countries and continents, including Europe, Far East, USA S. America and Australasia, and you can expect
to spend approximately 60% of your time overseas
Candidates, qualified to at least HNC in elect trical enginee graduates in electronics or elec experience in Field should have at least 2 years cipline in the electronics industries in computers industrial control or complex electronic control equipment.
We offer a salary up to $£ 7500$, including overseas allowance plus annual bonus. There are excellent daily allowances when travelling. Career prospects, as a result of the company's growth, are excellent.
Please write, with brief personal and career details, or telephone for an application form to Electronics Limited, 766 Holloway Road, Crosfield N19 3JG. Tel: 01-2727766, ext. 229

Please send me a TJB Appointments Registration form:
Name .
Address

SENIOR LABORATORY TECHNICIAN

BBC RESEARCH DEPARTMENT KINGSWOOD WARREN, TADWORTH,SURREY A vacancy exists in the Transmitters and Propagation Section of the BBC Research Department for a Senior Laboratory Technician. Duties include a variety of work in the field of radio
frequency technology under the direction of research engineers. frequency technology under the direction of research engineers.
Construction and experimental work is involved on transmitting and receiving systems for a wide selection of frequency bands
and includes work on microwaves and optical communications. and includes work on microwaves and optical communications. Candidates, male or female, must possess an H.N.C. or equivalent
qualification and have a good knowledge of radio and electronic qualification and have a good knowledge of radio and electronic
technology An interest in radio and television and associated radio frequency measuring techniques would be desirable, also experience in basic workshop practice. Good opportunities for promotion to Engineering Technician.
Starting salary according to experience in the range $£ 5170$ - 5620 rising to $£ 6295$ as a Senior Laboratory Technician, and ultimately to $£ 7585$ as an Engineering Technicia
Pensionable post. Re-location expenses considered. Pensionable post. Re-location expenses considered. BBC Rescarch Department, Kingswood Warren, Tadworth, Surrey KT20 $\mathbf{6}$ NP, quoting reference $696 / \mathrm{MME}$ or telephone Mogador 2361.

BBC

ELECTRONICS /SOFTWARE

> ENGINEERS

LEISURE INDUSTRY
Due-to continued expansion in the development of systems related to coin-
operated phonographs, video games and other tyees of coin-operated perated phonographs, video games and other types of coin-operated
amusement machines the Research and Development Department of Associated Leisure Amusement Machines Ltd, is seeking to recruit lectronic Engineers with software experience.

The candidate should have experience in the design and operation of microprocessor
programming. Three week
negotiable.

The Old Granary, Wetmore Roa
Burton-on-Trent, Staffs.

THE ROYAL FREE
TSPITAL HAMPSTEAD DEPARTMENT OF
MEDICALPHYSICS MEDICAL PHYSICS TECHNICIAN II OR II (Electronics)

 eativialent, with flectronics. Pleas
ret. 0663.
BASIC GRADE BUATE SCIENTIST GRADUATE scale e384--4469 p.a. (increase

 treasment palining sheme., associated with
ancomputercontoleded treatment machine.
and LOCUM BASIC GRADE PHYSICIST

The Polytechnic

 of NorthLondon Department of ChemistryLABORATORY TECHNICIAN (Grade 5)
rearired for Electronic
Instrumentiat work the
Laboratories TThis will involve Laboratoriasis. Thwork will inveve
maint
maintenance, fault-finding,
 servo-systems, analogue and
digital ciricuits as applied to spectroscopic and other scientific
equipment. There will also be oquipment.there will alation,
opportunity or the opation,
development, modification an, development, modification and
construction of special equipm
for eresearch purposes. for research purposes.
Candidates should hold HNC, Candidates should holid HNC
Advance city
Guids
and recognised apprenticeship, or
equivanent
tualificition,
preferably preferably in electroninss, and
have 8 years experiecce inclusive
of the training period. of hat training epriod. Salary Scale: E3999-4.4581
incusive of London Weighting
Apply for further details and Apply for further detalls and Appication form to the Head
the e epartment of Chemistry,
The oplytechnic of North The epartechnic of North
The eoly,
London, Holloway Road, London,
(8654 $)$

Find the Fault.
We need Test Engineers at all levels.

Can you imagine a 'crime sheet' of 200 faults that have to be cleared? Some of these involve sorting out problems in proprietory equipments, with no time to send them ous, to cables that aren't matched in length to within a fract
Systems testing is a very special ability, calling for a cool head, a logical mind and the ability to think 'What kind of act, a real intellectual chasibe. We a it, provided you hava possibility. It is, in fact, a real intellectual challenge. We are prepared to show you how to do th
xport is a world leader in the development, production and marketing of professional broadcast equipment. We of Cambridge, and have been closely associated with its commercial and cultural activities for mated on the outskirts good schools, historic buildings and large, green, open spaces. We're and cultural activities for many years. There hour from the coast.
If you are interested in finding out more about the job and its prospects, the possibilities of travel and so on, we write to her at the address below. write to her
candidates.

PyeTVT Limited

po Box 41 Coldhams Lane Cambridge England CB1 3JU
Tel: Cambirige (0223) 45115. Telex: 81103

DESIGN AND TEST ENGINEERS

Vacancies exist at both senior and junior levels in the Design Departments and at junior level in the Test Department of
the Research Division of Rediffusion Engineering Limited at Kingston-upon-Thames, Surrey. the Research Division of Rediffusion Engineering Limited at Kingston-upon-Thames, Surrey
Rediffusion supply, install and operate Cable Television Distribution Systems in the U.K. and abroad, and Rediffusion
Engineering is responsible for the design of equipment to operate and maintain these systems. Senior Design Engineers are
equipment solving a variety of problems from D.C. to U.H.F. relating to small scale production analogue and digital
equission on cable and via fibr Graduates with at least 5 years' design experience are sought for these positions. Junior positions are also availaple fo graduates or persons qualified to H.N.C. standard to assist in some of these areas.
The Test Department duties will include measuring parameters of components and sub-assemblies at R.F., fault finding
and testing of simple circuits, as well as Applicants should have a good general education and throu more general duties associated with a test department. technical qualifications. The company offers excell
restaurant. There is a contributory pension and in quiet surroundings, 20 days annual holiday, and a subsidised staff
Apply to:
H. L. Baker, Esq., or I. R. Budgen, Esq. Head of Cable Transmission Depart ment, Head of Test. 187 Coombe Lane West,
Kingston-upon-Thames,
Surrey KT2 7DJ.
Telephone: 01-942 8900

Graduate Electrical/ Electronic Engineers
 Research and Development in

Telecommunications
The Directorate of Telecommunications, London, is responsible for the extensive and sophisticated facilities cused by the police, fire, , $\begin{aligned} & \text { rison and associated services. The role } \\ & \text { of the Research ind Development Section is to ensure that maximum benefit is derived }\end{aligned}$ from the use of modern techniques.
The training and experience given to Graduate Engineers - ranging from the initial interpretation of a non-technical statement of requirement through to the management
of design, development and contract - is carefully planned by a senior engineer and
covers the training requirements of the IEE.
You should preferably be aged under 26 and must have a good honours degree in
electronics or electrical engineering or an allied subject.
SALARY (under review)
Your starting salary will be at least $£ 5035$. Completion of training (usually one or two
years) leads to a salary rising to $£ 7320$. Promotion prospects. Non-contributory years) leads to
pension scheme

For further details and an application form (to be returned by 12 October 1979) write
to Civil Service Commission Alencon (ink Basingstoke Hants RG211)B or to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1 JB, or
telephone Basingstoke (0256) 68551 (answering service operates outside office telephone Basingstoke ref
hours). Please quote ref: $\mathbf{T} / 5179 / 2$
HOME OFFICE

Unvoseara of iverepoe SEMIOR EXPERIMENTAL OFFICER EXPERIMEMTAL OFFICER
 Sstems for collecting and procossing dat

A MADHOUSE IS MOVING

NEW VACANCIES INCLUDE

 Diect managess.

 Eety.ing

ALWAYS IN DEMAND
Electronic Blokes - all shapes and sizas - anyone with experience and or
nualficaions
in electronics
turther detais plesse contect:
Charles Airey Associates

TECHNICAL LIAISON EXECUTIVE

Dusseldorf

Maxell Europe are International leaders in the field of quality magnetic tapes which include audio and video cassettes. As a result of their European expansion programme they require a young and energetic person, ideally aged 25-35 to work closely with their European distributors and dealers and to supervise the Maxell tape clinics.
Based in Dusseldorf but with extensive European travel, a working knowledge o German would be useful, though not essential. Salary will be negotiable, commensurate with the position. Please write to the address below.
CHR Recruitment telephone:01-629 3727. Telex:261254 CHRINT

ELECTRONICS ENGINEERS ONC/HND or relevant experience preferably with
digital and video background to work on amusement
machines and logic boards. TV ENGNEERS with mono and colour experience. Details on application to 1 Emerson at: 127 Wandsworth High Street, London,
S.W.18. $01-870 \quad 5224$ /
5238.
$\begin{aligned} & \text { UNIVERSITY OF LIVERPOOL } \\ & \text { DEPARTMENT OF PHYSICS }\end{aligned}$
ELECTRONICS
TECHNICIAN
GRADE 6
$\begin{aligned} & \text { missioning digititaland and analagde com- elec- } \\ & \text { tronic equipment. Goood opportunity }\end{aligned}$
$\begin{aligned} & \text { to gain experience of complex sys. } \\ & \text { tems sor data accuusisition and proces } \\ & \text { sing using }\end{aligned}$

MANAGER

 QUALITY ASSURANCEROHDE \& SCHWARZ are one of the worlds leading manufacturers of communication equipment and instrumentation for the radio frequency market. A career opportunity xists at AVELEY/ROHDE \& SCHWARZ UK LTD for a quality assurance manager with he aptitude for the demanding and fascinating business of controlling quality in a TAN 05.24 MOD approved organisation.
We operate at the forefront of technology. The prospects are excellent and the equivalent experience will be required in order to understand the technology and test methods. Training is given in Germany and the United States
If you consider you are qualified to manage our quality assurance department please elephone 01-397 8771 for an application form or contact direct our General Manager D. H. Meyer.

We offer attractive reward packages to our successful managers and provide pleasant working conditions at our Chessington office
Ring now!
aveley
electric

Service Engineer

 equipment: We now ened an engineer rosestive our vide rande of
colurTV. sat our min senvice enentre in Paddock Wood.

The ideal candidate, male of female, will have City and Guiids 222 . Plus a colour endorsement, and at least 3 years' practical
experience. Experience of itT products is preferred but not experience. Experience of 1 ITT.
essential, as training will be given:

We offer an excellent starting salary, and the opportunity to work
with some of the latest televisison technology including Teletext.
Please write or telephone for an application form to:
Mr. S. Cousins, Personnel Officer iTT Consumer (U) Procts
MK) Mr. Cousins, Perso
Ltad. 1 Ildon Way, Pa.
Paddock Wood 4422.

ITIT
World-wide Technology

Technicia/Engineer TV Broadcasting

We have a vacancy for a skilled Technician Engineer in the central technical area at our operation and maintenance of electronic film projection equipment (telecine) during programme ansmission hours. Applicants must have a thorough knowledge modern colour TV engineering principles and education to C\&G (Full Tech. Cert.), TEC Dip. or HNC would be appropriate
The appointment will be made on an automatic annual salary scale from $£ 4442$ p.a. to $£ 6323$ p.a.. Agreement, rates under review).
Agreement, rates under review.
Application forms are available from:-
The Head of Staff Relations,
ATVNetwork Limited
ATV Centre, Birmingham. B1 2JP 0216439898 Ext. 369
Please quote Vacancy Number 66 (W)

Appointments

Professional Careers in Electronics

All the others are measured by us...
At Marconi Instruments we ensure that the very best of
innovative design is used on our range of innovative design is used on our range of number of interesting oportunities in our Desig e have a Production and Service Departments and we can offier attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. Ifyoure inereses:
following details:-

INSTRUMENT

TECHNICIANS

Help to ensure a

safer environment
These posts, at Cricklewood in London, are in the Instru-
ent Mainenance Unit, which underakese acceptance testing
 senviee for an extensive range of por pable environmental
monitoring instruments used dy the Inspectorate. This work is
 and the design of specialised test facilities. It it possible that the
Laboratories will be dispersed to sw Lancashire in the 1980 .
There are two posts savilable
 expected od to handile the mere demanding port and weill
supenise and train other members of the team. neve equipment, modify existing instruments and mear be
involved in the automation of the routine testing and calibration involved in
facilities.
The successtul candidate for the junior post will be
bected to assist the senior officer and will be concerned with epected to assist the sesior ofticice and yiul be oconcerned with Ine constructing, setinin--up and checking cailibrition, test rigs
as well
as the routine diagnosis of of instument Candidates for eithe post must hom 0 .. .

 post.
Salary for the senior post will start t 55305 and rise to E5875. For hhe second post, saliry starts betwen 5396 and
$\ddagger 4680$ according to to age, and rises to 53305 . salaries under review. Promition posespects at both tevels. Non-contributory
pension scheme. For furher de
For furher details and an application forr (to be returned
Ontober 19
$1979)$ write to
Civil Service Commission,
 Basingstoke $(0256$)
outside oftice hours). Please
68ute

Health \& Safety
 Executive

DEVELOPMENT MANAGER/ENGINEER

A leading Scientific Instrument Manufacturer require an experienced
Development evelopment Manager/ Engineer to control a am
ment in their $U . K$. Office in the South of England.
Applicants should have wide experience in project management within the Applicants should have wide experience in project management within the
sciensific instrument field and a highly innovative approach to instrumen-
tation design. tation design.
The post requires a possible base in Holland for training during the first six
months.
Applicants should apply in writing with full career details to Box No.
$\mathbf{9 6 9 2}$.

EDITOR

 Applicants need not have experience in iournalism but must be literate and
thoroughy coversant with the communications ind ustry. The sucossful applicant will be capable of controlling the editorial policy of
the journal and ensuring titu develoment as one of the most exciting and
respected international nublication in the com mications bsinest
 intititive
This responsible position will justify a high salary and offer considerable
potential tor porsisonal develoloment

Wreless world, October 1979 UNIVERSITY OF YORK
Department of Chemistry CHIEF

ELECTRONICS

TECHNICIAN (GRADE 6)

 antion will be an advaniage but not
assen
Ssili

SENIOR ELECTRONICS TECHNICIAN

 Salary £3744£4788 Electronics Techician required tooform partof deonartrent responsible
for the mainenance and sevicioing of for the maintenance and seniving oft
medical and olectronic eruiniment
throughout the district. Candidates throughout the district. Candidates
should have a wide experience of
Sta electronic equipment wither an
standing of its safety aspects. Qualifications - HNC Electronics
preferred - ONC Electronics consid-
 Hastings Health District, 9 White
Rock Rood Hastings. Closing date
5ith October Hation

Telecommunications Maintenance Technician

This position provides an excellent opportunity for a broad range of equipment covering internal and external communications facilities on our North Sea Oil and Gas Production platforms. The range covers public address, tropospheric scatter systems.

The Job

The successful applicant will be required to:

* Co-ordinate and supervise a planned maintenance system
*Prepare defect reports for the telecommunications
engineers.
maintained.
* Ensure the documentation system are updated as
required.
Qualifications and Experience
Applicants should be aged 25-40 with an appropriate O.N.C or full City and Guilds Technological certificate in telecommunications, or have an equivalent services background.
Some experience on microwave equipment maintenance with at least one year at a supervisory grade would be advantageous.

The Rewards

A competitive salary package will be offered which will include allowances for offshore visits. The position is
based in Aberdeen, where appropriate.
Please write for an application form to.
Recruitment and Development Supervisor, UEPA/113,
Shell U.K. Exploration and Production,
1 Altens Farm Road,
Aberdeen. or telephone 0224-882149

вRIGHTON POLYTECHNIC learning resources
DEO REC
STUDIO ENGINEER
ding and editing area using state of the art
(e)
Moulsecombe, Brighton BN. Brighton 693655 Ext. 2536 . Closing date 17 October, 1979.

 ARTICLES FOR SALE

SPEAKER

 KITSTwo great new kits from KEF - the Speaker
Enginears respeeted by
HiFiri inthusiast all One is based oner the word 104 HaB and the
otheor on the largerferestanding Cantata.
Well give you helpful advice and full
And you can hears how guons dithe speakers are
before you build.

Nottingham Hi-Fi Centre

156 Alfreton Road
Tel: 0.0602786919
(9657)

antique machines + CURIOSITIES

 The world's first high quality glossymagazine devetod tom enchanital and
other collectables and curiosities of all

Application forms may be obtained from
British Gas Corporation
Engineoring Research Station
Kill
New castrie upon Tyne NE99 1L
Telephone: Newcastle 684828, BRITISH GAS
Engineering Research Station

 measuring instruments and systems for a world-wide telecommunications
market. New projects now under way demonstrate considerable technical innovation in analogue and digital design, and many use microprocessors. As a result of continuing growth we now have vacancies for people qualified to Degree, H.N.C., or equivalent level and with at least one year's relevant experience, in the following positions

Product Support Engineers

To work with our R \& D teams and ensure that serviceability is designed into products currently under development, plan and implement service support programmes for new products, train service personnel and customers, and

Technical Authors

To work with our Product Support Engineers, and the R \& D and Marketing teams, to produce high-quality Operating and Service manual
The successful applicants will combine a good knowledge of analogue and The successful applicants will combine a good knowledge of analogue and
digital techniques with the ability to get on well with people and communicate both the written and spoken word.
We can offer attractive salaries, and the Company's conditions of employment are excellent-including profit sharing, bonus, stock purchase scheme, noncontributory pension and life assurance plans, prolonged disability scheme and flexible working hours.
Please write or telephone for an application form to
Liz Stenhouse,
Personnel Administrator, South Queensferry Personnel Administrator,
Hewlett-Packard Limited,

HEWLETT
THORN CONSUMER ELECTRONICS LTD.

Advance Study Encineer

ARTICLES FOR SALE

COOKBOOK

by W. G. Jung Price $\mathbf{E 8 . 9}$

A SIMPLE GUIDE TO HOME
COMPUERS
DVIC: bomputen Price: 44.00
by Ditea
Microcomputer-bASED $\left\{\begin{array}{l}\text { MDESRON } \\ \text { Dy S.B. Peatman Price } £ 5.50\end{array}\right.$ INTRODUCING $\left\{\begin{array}{l}\text { by G.L.L.Simons } \\ \text { OPERATIONAL AMPLIFIERS }\end{array}\right.$ OPERATIONAL AMPLIFIERS
2nd dod
by G. . Clayton. . Price $£ 10.0$

 DEVELOPMENT SYSTEMS \&
SUBSYTEMS $\left\{\begin{array}{l}\text { Set price } £ 15.90 \\ \begin{array}{l}\text { by Motorola } \\ \text { g900 FAMILY SYSTEMS DESIGN }\end{array} \\ \text { OATA BOOK }\end{array}\right.$ g DAAM BOOK
By Texas Instruments Price $£ 8.40$ by Texas Instuments Price $£ 8.40$
INTODOCTION TO DIGITAL
TECNIOUSS $\left\{\begin{array}{l}\text { TECHNIQUEE Price E13.85 } \\ \text { ByDD. Porat } \\ \text { THE DESIGN \& DRAFTING OF }\end{array}\right.$ TPE DESIGN \& DRAFTING OF
PRINTEDCIRCUITS
by D. Lindsey *All prices include pótage *

THE MODERN BOOK CO.
Specialists in Scientific
R Technical
Books
19-21 PRAED STREE
LONDON W2 1 NP

Akai Glass \& X-Tal Ferrite Head
Model GX/650
Bargain at $£ 550$
Tel: DUBLIN $907 \underset{9650}{\mathbf{2 2 5}}$

TV TUBE REBUILDING Top quality professional plant and
equipment, and leading consultants For complete plant or y porading, and WESTERN WHYBROW ENG. (0736) 762265

european space agency

RESEARCH ASSISTANT FOR ASTRONOMY AND SPACE SCIENCE

The Astronomy Division of the Space Science Department,
ESTEC, Noordwijk, Holland, wishes to recruit an experienced ESTEC, Noordwikk, Holland, wishes to recruit an experienced
assistant for its research projects in millimetre radioastronomy.
The present work primarily involves the design fabrication and The present work primarily involves the design, fabrication and
testing of advanced experimental quasi-optical systems for testing of advanced experimental quasi-optical systems for
operation at frequencies from 600 GHz down to 200 GHz , operation at
with associated IF electronics, large filter banks, and backward wave local oscillators. The work will primarily y e carried out at the laboratories in
participation in observing campaigns at ground based obserparticipation in observing campaigns at ground based obser
vatories and in aircraft. Future work will involve also participation in the design and development of advanced elec-
tronic and electro-mechanical systems for space astronomy tronic and electro-mechanical systems for space astronomy.
Candidates must have an education to HNC level in electronics and several years' experience in designing and fabricating
analogue and digital electronics, preferably in a research analogue and
environment.
${ }^{(9705)}$

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY Large quantities of Radio. T.V. and Electronic Compinents.
RESISTORS CARBON \& C/F $1 / 1 / 4,1 / 2,1 / 3$. 1 Watt from 1 ohm to
10 meg. 10 meg .
RESISTORS WIREWOUND. $11 / 2,2,3,5,1,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Cera Metalamite, C280, etc.
Cel Convergence Pots, Slider Pots, Electrolytic condensors, Can Types,
Axial, Radial, etc.
 All at Knockout prices. Come and pay us a visit. Telepho
4450749
BROADFIELDS \& MAYCO DISPOSALS

TRANSFORMER

PROBLEMS?
TVA-1 KVA Prototypes in 7 -10 days.
Phe Ve Vince eliar on 06076 .
6R1616
TRENT TRANSFORMERS LTD.
NT TRANSFORMERS LTD.
2E Dorby Road
Ong Eaton, Notring
EQUIPMENT WANTED
A.R. Sinclair

Electronic Stockholders
Stevenage 812193
We purchase all types of
Mechanical and
Equipment and Surplus ctronic

C videobrokeris

Videobrokers is a new division of C.W. Cameron Ltd formed after many years of buying, selling and acting stock lines. The activity is operated on a worldwide basis with an increasing mailing list of over 20,000 buyers/sellers. If you wish your name to be placed on the list, drop us a line.
ROADCA Used section RCA TR60Quad PAL/ 625 VTR Code 502 Qty 3 RCA TR70 Quad PAL/ 625 VTR Code 505 Qty 2 RCA TR600 Quad PAL/ 625 VTR Code 508 Oty 4 AMPEX AVR 2 Quad PAL/ 625 VTR Code 512 Qty 5 Rank Mk IIFlying spot 16 mm Telecine Code 517 Oty 1 Rank Photoconductive 16 mm Telecine Code 518 Qty 2
RCA TK28 16 mm Telecine (new) Code 520 Qty 1 RCATK 2816 mm Telecine (new) Code 520 aty 1
VIDEO - VARIOUS EQUIPMENT

- New/Used

Hitachi FP 1020ENG colour camera Code 610Qty 2
IVC 501A Studio colour camera Code 611 Qty 2 IVC 93 TK colour camera Code 612 Oty 10 Please contact our Videobrokers Department for complete list or further details of the above.
C.W. CAMERON LTD.(Est. 1946)

Burnfield Road Giffnock Glasgow G46 7TH Tel. 041-6330077 Telex 779469

WIRELESS WORLD, OCTOBER 1979

Classified

${ }^{\text {notice TO OTHER }}$ MANUACTUERS

A COMPLETE SERVICE To manu-
facturers. Assembly, cable forming
I.H.S. SYSTEMS
 boards or completet units
contrart development.
We

 requirements, or send full details for a
prompt quotation.
TEL
TEL. 01-253 4562
or reply to Box No. WW 8237
PRINTED CIRCUITS BOARDS

Here's why you should buy an IC.E. instead of just any multimeter
*Best Value tor money

* Used by professional engineers, D.I.Y. * World-wide proven reliability. * Low servicing costs. * Large mirror scale meter. * Fully protected against overload. *Large range of inexpensive accessories. * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K. Distributors Prices from $£ 16.50-£ 32.00+$ VAT Send:for full colour leaflet and prices on. whole range including accessories. 1 =- ELECTRONIC - - BROKERS LIMITED 49-53 Pancras Road, London NW1 20B.
Tel: 01-837 7781. Telex: 298694.
~W-107 FOR $\square \square$
INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 140-159

INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 140-159		
GE		
	G.E.C.C. Sema Conductors ${ }^{24}$	${ }_{\text {Petalect Eliectronic Servicing }}^{\text {Philips Compact }}$......................... ${ }^{28}$
	Gould Advance 11	Powertran llectronics 118 , 119
${ }_{\text {Amateur R/Retailers Assoc. }}$ Al............... 110	G.R. Electronics ${ }_{23}^{137}$	Precision Instruments Ltd. ${ }_{31}^{22}$
Antex (Electronics) Ltd. 69	Hall Electric Ltd.	
		Quantum Electronics
	Harris Electrononics (L....................... ${ }^{\text {25 }} 16$	
Aura Sounds 116	Henry' Radio ${ }^{137}$	
Bach-Simpson ${ }^{12}$	H.L. Audio (Newtronics)	
ay Electronics Ltd 12		Radio Shack Ltd ${ }^{135}$
Barrie Electronics Ltd ${ }^{131}$	I.C.s. Publishing co. ${ }^{121}$	
	I.LP. Electronics Ltd. 100	R.C.S.T. Valves ${ }_{\text {Rectics }}$ (.......................... 114
	Industrial Tape Applications Integrex Ltd.	Ryley Automation Ltd. 139
Bi-Pak Semiconductors Ltd 111		
Bress Industrial Mouldings Ltd	J.D. Electronics ${ }_{32}^{139}$	
	Associates 32	Sabtronics Inte
	K.A.C. Electronic Investments Ltd. $\quad \cdots \cdots, \cdots \cdots{ }^{121}$	Scopex Instruments Ltd. ${ }_{134}^{113}$
${ }_{\text {Cambridge Learning }}^{\text {Carston Electronics Ltd }}$.................. 103	Keithley Instruments Ltd	
Carronics	KG.M. Electronics Ltd. 13	Sescom
Chilmead Ltd. 122	Kirkham Electronics 14	re Electro
Cifer Systems 106	Kramer \& Co.	
${ }_{\text {Clirards No. }}$ Clarke-Smith		Special Products
Clarke-Smith ${ }_{\text {Colomor (Electronics }) \text { Litd. }}$	Lascar Elec ….......................... ${ }^{23}$	Suruten J. E. \& Co. Ltd.
Computer Appreciation	Lektrokit …i......................... 138	Surrey Electronics Ltd. ${ }^{133}$
Continental Specialists Corp. 15	Levell Electronics Ltd. ${ }^{36}$	Swanley Electronics Ltd. 131
Crellon Electronics Crimson Elektric 112		
Crimson Eleetric	Maclin-Zand Electronics Ltd. 19	
Dalston Elec ${ }_{131}^{133}$	Manners, K.T. Developments Ltd $\ldots \ldots \ldots \ldots{ }_{7}^{134}$	Tandy Corporation ${ }^{21}$
Datong Eiatroic.......................... 136	Maplin Electronic Supplies Martin Associates	Technomatic Ltd \ldots..................... ${ }^{120}$
Dispminus 20	Marshall, A. \& Sons (London) Ltd ${ }^{132}$	
Eagle/Carter Associates ${ }^{34}$	Microdigital ….............................. ${ }^{30}$	
Elec '79 Trech Comps (lectro.	Millbank Electronics (M.IL.) ${ }^{4}{ }^{4}$	
Electro- Tech Comps		Vero Electronics Litd. 38
Electronic Brokers Ltd 126, 127, 128, 129, 160	Minim Audio 121	Vero Speed $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }^{31}$
Electronic Equipment Ltd ${ }_{101}^{138}$	Monolith Electronics Co. 31	Viewdata Ex
Exlectroplan Ltd Expansion Corporation ${ }^{101}$	Multicore Solders Ltd. Cover iv	Walden Precisio
Expansion Corporation		West Hyde Developments Ltd ${ }_{102}^{107}$
Faircrest Eng. Ltd Farmell Instruments itd		Wilmslow Audio ${ }_{\text {W }}$
Feedback Instruments 99	NewnessButterworth 104	W.K. Electronics 32
${ }_{\text {Feirldech }}$............................... ${ }^{\text {a }}$ 33	Olson Electronics ${ }^{28}$	
Future Film Developments 112	о.M.B. Electronics ${ }^{38}$	
Reses adient		
	(03) 585-0581	Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2008
France \& Belgium: Norbert He Veat, F-92100, Boulogne, Paris.	ED Stateo of Ammica: Ray Ba	, Florida 33140 - Telephone: (305) 5327301 .
Hungerv: Mrs. Edir Bijusz, Hungaxpo Adverising A		Mike Loughlin, IPC Business Press, 15055 , Memorial Ste 119 ,
Teleophon:: 225008 - Telex: Budapest 22-4525	Wacker Drive, Chicago, Illinois 60601 - Telephone (312)	
Italy: Sig. C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6. 20154 Milan	Mr. Victor A. Jauch, Elmatex International, P.O. Box 34607 hone (213)	Consultants Ltd... 195 Cartion Tower, 2 Cartion Street, Toronito AAlso subscription agents.

fact:
 fact: \quad this condenser microphone sets a new standard of technical excellence.

[^0]: ww - 041 FOR FURTHER DETALL

[^1]: Continued on page 96

[^2]: See Lektrokit at one of the Lektrokit dealers near you. There's bound to be one they're springing up everywhere. Send for the name of your nearest-plus FREE ful
 colour catalogue-to:
 Lektrokit Ltd., Sutton Industrial Park, Earley, Reading, Berks RG6 1AZ

